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Abstract

This thesis is about optimal decision making for resource allocation problems and

sequential decision problems. There are two parts to this thesis: the first part focuses

on developing a new stochastic analysis of queues and algorithms necessary to assist

in the management of bike-sharing systems. The second part focuses on developing

a general learning framework for sequential decision problems.

The first part proposes a new transient dynamics analysis of the bike-sharing

station queueing model using complex analysis. Based on our queueing analysis, we

develop a new algorithm for the optimal allocation of bikes in a bike-sharing system.

Our algorithm takes in the rental rate, the return rate, and the number of docks

as its input and outputs the optimal allocation given by our objective function. To

demonstrate the practicality of our approach, extensive computational results are

included.

For the second part, we propose a tree-based method for solving sequential deci-

sion problems using Monte Carlo Tree Search (MCTS). Our method works by itera-

tively applying MCTS on small, finite-horizon versions of the original infinite horizon

Markov decision process. To demonstrate the efficiency of our approach, we provide

the first sample complexity analysis of the batch MCTS-based Reinforcement Learn-

ing method. Lastly, we tested the neural network implementation of our methods in

a challenging video game environment to demonstrate the power of our approach.
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Chapter 1

Thesis Overview

1.1 Motivation and Thesis Statement

This thesis is about optimal decision making via stochastic modeling and machine

learning. There is a growing demand for decision support systems. Many important

problems involve decision making under uncertainty. These include inventory manage-

ment, wildfire management, vehicle routing, supply chain management, self-driving

cars, aircraft collision avoidance, and robot locomotion control systems (Kochender-

fer et al., 2015; Sutton and Barto, 1998; Shalev-Shwartz and Ben-David, 2014). This

thesis will focus on two application areas: resource allocation problems and sequen-

tial decision problems. The resource allocation problems and the sequential decision

problems are connected since both involve decision making under uncertainty.

The first part of this thesis will explore the resource allocation problem. The

resource allocation problems seek to find an optimal allocation of a fixed amount of

resources to a given number of activities to minimize the cost incurred by the allo-

cation. The number of resources to be allocated to each activity can be treated as a

continuous variable, a discrete variable, or even both, depending on the application

setting. The resource allocation problem is encountered in a variety of application
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areas in operations research and management science, including load distribution,

production planning, computer resource, portfolio selection, and apportionment. In

this thesis, we will consider the inventory allocation problem in a bike-sharing sys-

tem. Specifically, we consider a bike-share inventory management problem where the

operator of the system must determine a cost-effective inventory allocation to meet

the quality of service requirements at each location.

The second part of this thesis will explore sequential decision problems. Sequential

decision problems describe a situation where the decision-maker makes successive

observations of a process before a final decision is made. Sequential decision problems

are typically modeled by the Markov decision processes. The main idea of the model

is that a decision-maker, or an agent (computer algorithm), inhabits an environment,

which changes the state randomly in response to action choices made by the decision-

maker over time. The state of the environment affects the immediate reward obtained

by the agent, as well as the probabilities of future state transitions. The decision-

makers objective, or the agent’s objective, is to select actions to maximize a long-term

measure of total reward. The sequential decision-making problem is encountered in

a variety of application areas in computer science, operations research, and finance,

including robot locomotion control systems, aircraft collision avoidance, self-driving

cars, personalized recommendation systems, games, bidding, and advertising.

Moreover, we consider the sequential decision problem in the context of stochastic

games. Specifically, we consider the task of learning complex action control in the

Multiplayer Online Battle Arena (MOBA) which is a challenging real-time strategy

game. Anthony et al. (2017) proposes a general framework, for sequential decision

problems, called expert iteration that combines supervised learning with tree search-

based planning. The methods described in Guo et al. (2014), Silver et al. (2017), and

the second part of this thesis can all be (at least loosely) expressed under the expert

iteration framework. However, no theoretical insights were given in any of these
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previous works and the second part of this thesis intends to fill this gap by providing

a full theoretical analysis of an iterative, MCTS-based RL algorithm. Our analysis

relies on the concentrability coefficient idea of Munos (2007) for approximate value

iteration and builds upon the work on classification based policy iteration (Lazaric

et al., 2016), approximate modified policy iteration (Scherrer et al., 2015), and fitted

value iteration (Munos and Szepesvári, 2008).

This thesis has two main goals: The first goal is to develop a flexible optimization

methodology for modeling resource allocation problems. We do this by under-

standing the transient distributions of the queueing models for resource allocation

problems. We develop as our second goal a flexible learning methodology for solv-

ing sequential decision problems efficiently. Moreover, we give the first sample

complexity analysis for the proposed methodology.

1.2 Main Results

In this section, we highlight the main results and provide a high-level summary of the

contributions of this thesis.

Contributions in PART I:

We propose a new transient dynamics analysis of the bike-sharing station queueing

model using complex analysis. Moreover, we present a method for approximating

the transient probabilities dynamics for the non-constate rate queueing model for

the bike-sharing station. Based on our queueing analysis, we develop a new algo-

rithm for the optimal allocation of bikes in a bike-sharing system. Our algorithm

takes in the rental rate, the return rate, and the number of docks as its input and

outputs the optimal allocation given by our objective function. To demonstrate
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the practicality of our approach, we give computational results using synthetic

datasets.

Contributions in PART II:

First, we propose a batch, Monte Carlo Tree Search (MCTS) based reinforce-

ment learning (RL) method that operates on the continuous state, finite action

Markov Decision Processes (MDPs) and exploits the idea that leaf-evaluators can

be updated to produce a stronger tree search using previous tree search results.

Function approximators are used to track policy and value function approxima-

tions, where the latter is used to reduce the length of the tree search rollout

(oftentimes, the rollout of the policy becomes a computational bottle-neck in

complex environments).

Second, we demonstrate a supervised learning approach for learning complex

policies for Multiplayer Online Battle Arena (MOBA) games with Parametrized

Action Spaces from relatively small numbers of human demonstrations. Our

technique uses a hybrid loss function to learn both continuous and discrete com-

ponents of the policies. And show that a completely data-driven resampling tech-

nique can be used to significantly improve the performance of the learned policy.

We tested our approach on a challenging video game environment, the popular

MOBA game King of Glory (a North American version of the same game is titled

Arena of Valor), where we build a competitive AI agent for the one-versus-one

(1v1) mode of the game.

Third, we provide a full sample complexity analysis of the method and show

that with large enough sample sizes and sufficiently large tree search effort, the

performance of the estimated policies can be made close to optimal, up to some

unavoidable approximation error. To our knowledge, batch MCTS-based RL

methods have not been theoretically analyzed.
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Finally, the feedback-based tree search algorithm is tested on the popular

MOBA game King of Glory (a North American version of the same game is

titled Arena of Valor), where we build a competitive AI agent for the 1v1 mode

of the game.

1.3 Outline

We organize the rest of the thesis into the following chapters. Chapter 2 discusses

optimal inventory repositioning in bike-sharing systems. Chapter 3 presents the su-

pervised learning-based decision making for infinite horizon problems. This can be

viewed as a queueing based decision making for the finite horizon decision problem.

In Chapter 4, we present the MCTS-based decision making for infinite horizon prob-

lems. Moreover, in Appendix A, we present the supplementary materials to Chapter

2. In Appendix B, we present the supplementary materials to Chapter 3. In Chapter

C, we present the supplementary materials to Chapter 4.
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Part II

OPTIMIZATION FRAMEWORK

FOR RESOURCE ALLOCATION

PROBLEMS

7



Chapter 2

Optimal Inventory Repositioning

in Bike-Sharing Systems

This chapter studies a new stochastic analysis of queues and presents the com-

plete transient distribution analysis for the bike-sharing station queueing models.

Based on our queueing analysis, we develop a new algorithm for the optimal allo-

cation of bikes in a bike-sharing system. Our algorithm takes in the rental rate,

the return rate, and the number of docks as its input and outputs the optimal

allocation given by our objective function. To demonstrate the practicality of our

approach, we give computational results using synthetic datasets.

The material in this chapter is joint work with Jamol Pender, Robert Hampshire,

and William Massey.

2.1 Introduction

Bike-sharing systems (BSS) have gained immense popularity in the major cities

around the world for more than a decade. The number of cities adopting bike-sharing

programs has rapidly increased since 2007. BSS is operating in more than 1200 cities
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worldwide and that number is projected to continue growing due to heightened inter-

est in sustainable mobility in the urban cities (Fishman, 2016; DeMaio and Meddin,

2019; Tao and Pender, 2020). A station-based BSS typically consists of a map of

stations.

The term repositioning/rebalancing in BSS refers to the movement of bicycles

across the system to maintain a reasonable distribution across all docking stations

Fishman et al. (2014). The uneven distribution of bicycles across the system is often

caused when the flow of bike-sharing trips move from certain area of the city to

another area. For example, in the morning peak hours, the flow of bike-sharing trips

move from residential area to commercial zone and vice versa in the evening peak

hour. This leads to the problem of some stations being empty while others are full.

The periodic repositioning of inventory helps maintain even distribution of both bikes

and docks in BSS. The demand for bikes is for those customers who wish to check out

a bike; whereas the demand for docks is for those customers who which to return a

bike at the BSS station and a station consists of a set of docks. A user is then allowed

to rent a bike from any station and return the bike at any station in the system.

The unbalanced flow in the BSS network not only reduces the usability of certain

stations as this could lead to a lack of reliability in service but it also imposes a

cost on the bike-sharing operators, the party in-charge of managing and maintaining

the BSS inventories, to manually redistribute the inventories Fishman et al. (2014).

In managing a BSS, rebalancing operations account for a sizable percentage of the

total operational costly; repositioning/rebalancing operation is the act of replenishing

a station with bikes when it becomes empty and the act of removing bikes from a

station when it is full. Ideally, you would like to rebalance as little as possible.

The ultimate goal of the bike-sharing system operators is two-fold: first is to

maintain a desired quality of service in the system by minimizing the number of

unsatisfied customers, that is the number of customers either blocked from retrieving
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a bike at a station or blocked from returning a bike at a station. The second is to

reduce costs due to frequent rebalancing of the inventories at each bike station in the

system by optimally allocating initial inventory at each station in the remainder of

the planning period. We develop a method to enable the operator of BSS to optimally

allocate bikes to each station during the planning period of one day.

The contributions of this work can be summarized as follows. We propose a

new stochastic analysis of queues and presents the complete transient distribution

analysis for the bike-sharing station queueing models. Our approach bypasses the

sample path argument, traditionally used to obtain the transient probabilities of the

model, and reduce this analysis to simply computing a real integral. Based on our

queueing analysis, we develop a new algorithm for the optimal allocation of bikes

in a bike-sharing system. Our algorithm takes in the rental rate, the return rate,

and the number of docks as its input and outputs the optimal allocation given by

our objective function. To demonstrate the practicality of our approach, we give

computational results using synthetic datasets.

Notations: We now briefly outline a commonly used notation for queueing system.

Other notations will be defined as needed throughout the paper. A general nota-

tion for fully characterizing a queueing system is the Kendall’s notation. Denote a

queueing system by:

A/B/C/D/E, (2.1.1)
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where

A : the arrival/inter-arrival time distribution

B : the service times distribution

C : number of servers in the system

D : the capacity of the system. (i.e. the maximum number of customers in the system)

E : the service discipline. (e.g. PS, FIFO and FCFS).

2.1.1 Related Work

Rebalancing inventory in a bike-sharing system has received considerable attention in

the literature in recent years. In the literature, this problem is commonly known as the

bike-sharing rebalancing, also known as bike-sharing repositioning problem (BRP).

BRP typically consists of two parts: first, determining the desired inventory level at

each bike station. Second, planning truck routes to pickup inventories from stations

with surplus inventories and deliver them to stations that require replenishment.

Both problems are incurred when a bike-sharing system is unbalanced. A burgeoning

area of research in bike-sharing focuses on solving the twin problems. In their work,

Schuijbroek et al. (2017) proposed a framework cluster-first route-second huristic that

handles two problems of BRP of determining the service level requirements at each

bike-sharing station and approximates routing costs for rebalancing the inventory. On

the other hand, the idea of formulating the static bike repositioning (SBR) problem

as a bilevel programming model was explored by Tang et al. (2019). The authors

developed an iterated local search and tabu search to solve the bi-level programming

model.

Our approach for determining the desired inventory level at each bike station is a

variant (and in some respects, generalization) of the bi-level formulation in Tang et al.
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(2019). The key differences are the following: (1) We further modeled the upper-level

allocation problem as a queueing system and used queueing performance measures to

define the user dis-satisfaction objective function as explored by (Raviv and Kolka,

2013; Raviv et al., 2014), and (2) we present a full analysis of the dynamics for the

finite capacity queueing model used for modeling inventories at a single bike station

in the BSS. Our approach bypasses the sample path argument, traditionally used to

obtain the transient probabilities of the model, and reduce this analysis to simply

computing a real integral.

Several studies in the literature focus on bike-sharing demand analysis, which

consists of forecasting future demand. In their paper, Pan et al. (2019) proposes

a real-time method for predicting bike renting and returning in different areas of a

city during a future period based on historical data, weather data, and time data.

Also, Wang and Kim (2018) mainly focused on the short-term forecasting for docking

station usage. Demand analysis is useful in improving the quality of service objective

function (user dissatisfaction function) used in this paper.

2.2 Spectral Analysis of the Transient Distribu-

tion of Queues

In this section, we introduce 5 queueing models summarized in Figure 2.1. Moreover,

we also derive transition probabilities for each of the 5 queueing models. The purpose

of introducing these models and deriving their transition probabilities is to eventually

study bike-sharing systems.
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Figure 2.1: The relationship between the 5 queueing models studied in this chapter.

2.2.1 The Free Process

We first introduce an important process called the free process, also known as the

zero-barrier free process. Studying this simple process is vital as it would help us

further understand complicated processes.

Definition 2.2.1. The free process is the process
{
Z(t)

∣∣ t ≥ 0
}

defined by

Z(t) = Z(0) + Πλ(t)− Πµ(t), (2.2.1)

where Πλ(t) and Πµ(t) are two independent Poisson processes with rates λ and µ

respectively. The mean and variance of the free process are linear functions of the

following form:

Em
[
Z(t)

]
= m+ (λ− µ)t and Var

[
Z(t)

]
= (λ+ µ)t. (2.2.2)
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Figure 2.2: The realizations of the free process with λ = µ = 1, Z(0) = 0, ∆t = 10−3,

and 0 < t < 24, 000.
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Figure 2.3: The plot of the steady-state mean E
[
Z(t)

]
and the steady-state standard

deviation σZ(t) of the free process. For the simulation, we set ∆t = 10−3, N = 104,

and 0 < t < 24. In (a) λ = µ = 1, and Z(0) = 0. In (b) λ = µ = 0.5, and Z(0) = −16.

In (c) λ = 2, µ = 1, and Z(0) = 0. In (d) λ = 1, µ = 2, and Z(0) = 0.

In Figure 2.2, we show the realization of the free process, starting at the origin,

as a function of time. As you can see, the free process is not constrained to either

positive or negative states. To validate the simulation of the free process given by

the Algorithm 1, we compare the simulation results with the steady-state closed-

form mean and standard deviation of the free process as shown in Figure 2.3. The

simulation results closely approximate the theoretical closed-form results.
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Algorithm 1: The free process simulator

Input: Given arrival rate λ, service rate µ, initial state m and stopping time

T .

Output: the free process Z

1 Initialize time t = 0, starting state z = m, and create an empty list Z

while t ≤ T do

2 U1 ∼ U(0, 1)

3 t← t− log(U1)
λ+µ

if t > T then

4 Break

else

5 U2 ∼ U(0, 1)

if U2 <
λ

λ+µ
then

6 z = z + 1

else

7 z = z − 1

end

8 Z.append(z)

end

end
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Figure 2.4: The transient states of the free process Z(t). The values λ and µ are the

rates in which the state transitions in the positive direction and negative direction

respectively.

The state-space of the free process is set Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. Let

Pm
{
Z(t) = n

}
be the transition probability for Z(t) starting at state m and terminat-

ing at state n, for time t ≥ 0 and for m,n ∈ Z. The transient states of the free process

are given in Figure 2.4. It is well known, see (Ledermann et al., 1954; Baccelli and

Massey, 1989), that the transition probabilities for the free process Pm
{
Z(t) = n

}

can be solved explicitly in terms of the modified Bessel functions. The exact solution

for the transient distribution of the free process has been proved in the past using

various advanced methods (Champernowne, 1956; Clarke, 1956; Ledermann et al.,

1954; Baccelli and Massey, 1989). In their work, Baccelli and Massey (1989) describe

Z(t) as a nearest-neighbor random walk on the integers and derived the following

result through sample-path arguments:

Pm
{
Z(t) = n

}
≡ P

{
Z(t) = n

∣∣∣Z(0) = m
}

= e−(λ+µ)t ·
(λ
µ

)(n−m)/2

· In−m
(

2t
√
λµ
)

for all integers m and n, where In(·) is the nth modified Bessel function as shown in

Figure 2.5. The explicit formula above also describes processes associated with the

Mλ/Mµ/1/∞ queue length process when we restrict m,n ∈ Z+ such that Z(s) 6= 0

for 0 ≤ s ≤ t. Many explicit solutions in queueing theory involve Bessel functions.
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Figure 2.5: The first six modified Bessel functions

The modified Bessel function of order n > −1 for all real x is defined as follows:

In(x) =
∞∑

k=0

1

k!Γ(k + n+ 1)
·
(x

2

)2k+n

. (2.2.3)

In is often referred to as the modified Bessel function or Bessel function with imaginary

argument. It turns out that the exact solution of the transition probabilities of the free

process can be expressed in a simpler form. In what follows, we develop a new method

for deriving the transition probability for the free process that bypasses the use of

Bessel functions or transform methods such as Laplace transforms. In developing

this method, we will exploit the natural group symmetries of the process and will use

simple integration.
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α ≡ λ+µ
2

δ(eiθ) = cos θ

β ≡
√

λ
µ

δ(ω) = δ( 1
ω

)

γ ≡ √λµ εn(ω) ≡ ωn− 1
ωn

2

ρ ≡ β2 = λ
µ

εn(ω) = −εn( 1
ω

)

δ(ω) ≡ ω+ 1
ω

2
εn(1) = εn(−1) = 0

γ · δ(β) = γ · δ(1/β) = α εn(eiθ)
i

= sin θ

δ(1) = 1

Table 2.1: Useful parameters, functions, and identities

Next, we give a useful proposition and lemma’s that would be helpful in the

derivation of the transition probabilities.

Proposition 2.2.1. We have the following representation of the sum of εn(·) func-

tion:

n∑

`=1

a` · εn(ω) =
ε1(ω) + an+1 · εn(ω)− an · εn+1(ω)

2 ·
(
δ(a)− δ(ω)

) (2.2.4)
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Proof.

n∑

`=1

a` · εn(ω) =
1

2
·

n∑

`=1

(aω)` − (a/w)`

=
1

2
·
(

1− (aω)n+1

1− aω − 1− (a/ω)n+1

1− a/ω

)

=
1

2
·

(
1− (aω)n+1

)
·
(

1− a/ω
)
−
(

1− aω
)
·
(

1− (a/ω)n+1
)

(1− aω) · (1− a/ω)

=
1

2
· 1− (aω)n+1 − a/ω + a2 · (aω)n − 1 + (a/ω)n+1 + aω − a2 · (a/ω)n

(1− aω) · (1− a/ω)

=
a · ε1(ω) + an+2 · εn(ω)− an+1 · εn+1(ω)

1 + a2 − a · (ω + 1/ω)

=
a · ε1(ω) + an+1 · εn(ω)− an · εn+1(ω)

a+ 1/a− (ω + 1/ω)

=
ε1(ω) + an+1 · εn(ω)− an · εn+1(ω)

2 ·
(
δ(a)− δ(ω)

) (2.2.5)

Lemma 2.2.2. The moment generating function for the free process Z(t) has the

form:

Em

[(
ω

β

)Z(t)−n
]

=

(
ω

β

)m−n
· e−2γ·

(
δ(β)−δ(ω)

)
t (2.2.6)

Proof. From the functional Kolmogorov forward equation, we have

d

dt
Em [f(Zt)] = λ · Em [f(Zt + 1)− f(Zt)] + µ · Em [f(Zt − 1)− f(Zt)] (2.2.7)
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where f(Zt) =
(
ω
β

)Zt−n
with β =

√
λ
µ

and γ =
√
λµ. So λ = βγ and µ = γ

β
, then the

functional forward equation becomes

d

dt
Em

[(
ω

β

)Z(t)−n
]

= λ · Em
[(

ω

β

)Z(t)+1−n

−
(
ω

β

)Z(t)−n
]

+ µ · Em
[(

ω

β

)Z(t)−1−n

−
(
ω

β

)Z(t)−n
]

= βγ · Em
[(

ω

β

)Z(t)−n
]
·
(
ω

β
− 1

)
+
γ

β
· Em

[(
ω

β

)Z(t)−n
]
·
(
β

ω
− 1

)

= Em

[(
ω

β

)Z(t)−n
]
·
[
βγ

(
ω

β
− 1

)
+
γ

β

(
β

ω
− 1

)]

= Em

[(
ω

β

)Z(t)−n
]
·
[
γω − βγ +

γ

ω
− γ

β

]

= Em

[(
ω

β

)Z(t)−n
]
·
[
γ

(
ω − 1

ω

)
−
(
βγ +

γ

β

)]

= Em

[(
ω

β

)Z(t)−n
]
·
[
γ

(
ω − 1

ω

)
− (λ+ µ)

]
(2.2.8)

= Em

[(
ω

β

)Z(t)−n
]
· 2
[
γ

(
ω − 1

ω

2

)
−
(
λ+ µ

2

)]

= Em

[(
ω

β

)Z(t)−n
]
· 2
[
γδ(ω)− α

]
(2.2.9)

= Em

[(
ω

β

)Z(t)−n
]
·
[
− 2
(
α− γδ(ω)

)]
(2.2.10)

= Em

[(
ω

β

)Z(t)−n
]
·
[
− 2γ ·

(
δ(β)− δ(ω)

))]

In Equation 2.2.8, we used the fact that λ = βγ and µ = γ
β

. Also in Equation 2.2.9,

we used α = λ+µ
2

and δ(ω) =
ω− 1

ω

2
. So we have the following differential equation

d

dt
Em

[(
ω

β

)Z(t)−n
]

= Em

[(
ω

β

)Z(t)−n
]
·
[
− 2γ ·

(
δ(β)− δ(ω)

))]
. (2.2.11)
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Using the method of separation of variable, the solution of the above differential

equation has the form:

Em

[(
ω

β

)Z(t)−n
]

= C · e−2γ·
(
δ(β)−δ(ω)

)
t. (2.2.12)

and the exact constant C =
(
ω
β

)Z(0)−n
is obtained by setting t = 0 in the solution of

the differential equation.

Em

[(
ω

β

)Z(t)−n
]

=

(
ω

β

)Z(0)−n

· e−2γ·
(
δ(β)−δ(ω)

)
t. (2.2.13)

Now that we have the moment generating function for the free process. We are

ready to give the results for the transition probabilities for the free process. Before

we do that, we define a few useful complex integration concepts.

Definition 2.2.2 (General Cauchy’s Theorem).

We have

∫

γ

f(z)dz = 0 if either: (2.2.14)

1. The function f has an analytic domain (complex differentiable) Ω, where γ =

∂Ω. Analytic domain is a complex differentiable function f : C → C over an

open set Ω ⊂ C

2. The cycle (continuous function) γ has an analytic funtion F where f = F ′.

A cycle is a continuous funtion γ : [0, 1] → C with the same boundary point

γ(0) = γ(1).
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Definition 2.2.3 (Cauchy Integral Formula). Let f have an analytic domain Ω with

γ = ∂Ω. For all a ∈ Ω, we then have

f(a) =
1

2πi

∫

γ

f(z)

z − adz. (2.2.15)

Remark 2.2.1 (Integral Identity). We have the following integral identity via the

Cauchy Theorem and Integal formula:

1

2πi

∫

|z|=r
zn
dz

z
=

1

2πi

∫

|z|=r
zn−1dz =





1 n = 0

0 n 6= 0 .

(2.2.16)

For all n 6= 0, zn−1 = d
dz
zn

n
and zn

n
is analytic on

{
z
∣∣ |z| = r

}
. Also notice that z−1 =

d
dz

log z, but the logarithm cannot be single valued and continuous on
{
z
∣∣ |z| = r

}
.

Hence, it is not analytic here. For case of n = 0, just use the Cauchy integral formula.

Moreover, we also have the following integral identity for the event {Z(t) = n} :

{Z(t) = n} =
1

2πi

∮

|ω|=r

(
ω

β

)Z(t)−n
dω

ω
=





1 Z(t) = n

0 Z(t) 6= n .

(2.2.17)

When Z(t) = n then following complex integral evaluates to 1:

1

2πi

∮

|ω|=r

(
ω

β

)Z(t)−n
dω

ω
=

1

2πi

∮

|ω|=r

dω

ω

=
1

2πi

∫ 2π

0

1

ω(t)

dω(t)

dt
dt

=
1

2πi

∫ 2π

0

ireit

reit
dt

=
2πi

2πi

= 1. (2.2.18)
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We used the fact that ω(t) = reit for 0 ≤ t ≤ 2π where r is any positive real number.

Similarly when Z(t) 6= n, the complex integral evaluates to 0 by invoking the Cauchy’s

residues theorem Bak and Newman (1997). Hence, we have

1

2πi

∮

|ω|=r

(
ω

β

)Z(t)−n
dω

ω
= 0 (2.2.19)

Therefore the event {Z(t) = n} can be represented as follows:

{Z(t) = n} =
1

2πi

∮

|ω|=r

(
ω

β

)Z(t)−n
dω

ω
(2.2.20)

Theorem 2.2.3 (Free Process Transition Probabilities as Complex Integrals). The

Free Process transition probabilities as complex integrals is given by the following

integral:

Pm
{
Z(t) = n

}
=
βn−m

2πi
·
∮

|ω|=r
ωm−n · e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω
(2.2.21)

Proof.

Pm
{
Z(t) = n

}
= Em

[
1

2πi

∮

|ω|=r

(
ω

β

)Z(t)−n
dω

ω

]

=
1

2πi

∮

|ω|=r
Em

[(
ω

β

)Z(t)−n
]
dω

ω

=
1

2πi

∮

|ω|=r

(
ω

β

)m−n
· e−2γ·

(
δ(β)−δ(ω)

)
tdω

ω

=
βn−m

2πi
·
∮

|ω|=r
ωm−n · e−2γ·

(
δ(β)−δ(ω)

))
t dω

ω
(2.2.22)
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Theorem 2.2.4 (Free Process Transition Probabilities as Real Integrals). The Free

Process transition probabilities as real integrals is given by the following integral

Pm
{
Z(t) = n

}
=
βn−m

π
·
∫ π

0

cos
((
m− n

)
· θ
)
· e−2γ·

(
δ(β)−cos θ

)
t dθ (2.2.23)

Proof.

Pm
{
Z(t) = n

}
= Em

[
1

2πi

∮

|ω|=r

(
ω

β

)Z(t)−n
dω

ω

]

=
βn−m

2πi
·
∮

|ω|=r
ωm−n · e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω

=
βn−m

2πi
·
∮

|ω|=1

ωm−n + 1/ωm−n

2
· e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω

(
since δ(ω) = δ(

1

ω
)

)

=
βn−m

2πi
·
∮

|ω|=1

δ(ωm−n) · e−2γ·
(
δ(β)−δ(ω)

)
t dω

ω

=
βn−m

2πi

∫ π

−π
δ(ei(m−n)θ) · e−2γ·

(
δ(β)−δ(eiθ)

)
t idθ

=
βn−m

2π
·
∫ π

−π
cos
((
m− n

)
· θ
)
· e−2γ·

(
δ(β)−δ(eiθ)

)
t dθ

=
βn−m

π
·
∫ π

0

cos
((
m− n

)
· θ
)
· e−2γ·

(
δ(β)−cos θ

)
t dθ (2.2.24)

In the above derivation, we set ω = r · eiθ. Then |ω| = |r · eiθ| = r|eiθ| = r, dω
ω

= idθ

with r = 1. Moreover, we also used the fact that eiθ = cos θ+ i sin θ and the real part

of eiθ is cos θ. We used the fact that cos is an even function to change the limit of

integration. And since we are interested in probability we limit our attention to the

unit circle by setting r = 1, which is an optimal choice of contours. This essentially

transforms this complex integral over the unit complex in C into the real integral over

the real line R.

The major contribution in Theorems 2.2.3 and 2.2.4 is new derivation using com-

plex analysis. Another closed-form representation of the free process transition prob-

abilities exists Skellam (1946); Feller (1968). The free process transition probabilies
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given in Theorem 2.2.4 has the following symmetries:

Pm
{
Z(t) = n

}
= Pm+`

{
Z(t) = n+ `

}
= P−n

{
Z(t) = −m

}
(2.2.25)

and

βm−n · Pm
{
Z(t) = n

}
= βn−m · Pn

{
Z(t) = m

}
(2.2.26)

for all integers m and n. Which implies

Pm
{
Z(t) = n

}

βn−m
=

Pm+`

{
Z(t) = n+ `

}

βn−m
=

P−n
{
Z(t) = −m

}

βn−m
=

Pn
{
Z(t) = m

}

βm−n

These symmetries would be useful in deriving the transition probabilities for the

other processes we study in this chapter. Next, we study the single barrier absorbing

process.

2.2.2 Single Barrier Absorbing Process

An absorbing process at the origin is a Markov chain in which it is impossible to leave

the origin, and any state could reach the origin with some positive probability. The

absorbing process is the same as the free process that starts either positive or negative

and when the process hits zero, it stays there forever. The origin is called an absorbing

state. We classify the state space Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} of the free

process into two classes: Absorbing state {0} and transient states {. . . ,−3,−2,−1}

and {1, 2, 3, . . .}. So there are two transient states which depend on the starting

state: if the process starts positive, then the transient states are {1, 2, 3, . . .}. On

the other hand, if the process starts on a negative state then the transient states are

{. . . ,−3,−2,−1}.
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Positive starting state: Our transportation interpretation of the absorbing pro-

cess, in the context of public transportation serves, is a bike-sharing station where

customers are infinitely patient and are waiting in line. And the bike station starts

off with some people already in the line waiting for service. Figure 2.6 shows the

transient states of the absorbing free process at the origin given a positive starting

state. One interesting question is this setting is how long does it take to clear the

queue, in other words, how long does it take to serve all waiting customer.

1 2 . . .3
Q! Q + 1 Q! Q� 1

µ�

Figure 2.6: The transient states of the absorbing free process at the origin given a

positive starting state. The values λ and µ are the rates in which the state transitions

in the positive direction and negative direction respectively.

Negative starting state: By symmetry of the free process, we can also talk about

negative transient states. One interpretation of the absorbing process, in the context

of public transportation serves, is a bike-sharing station where ”negative customers”

are infinitely patient and are waiting in line. In other words, bikes are sitting at the

station waiting to be rented. And the bike station starts off with some initial bike

already at the station waiting to be rented. Figure 2.7 shows the transient states of

the absorbing free process at the origin given a negative starting state. One interesting

question is this setting is how long does it take to clear the queue, in other words,

how long does it take for the station to run out of bikes.
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-3. . . -2 -1
Q! Q + 1 Q! Q� 1

µ�

Figure 2.7: The transient states of the absorbing free process at the origin given a

negative starting state. The values λ and µ are the rates in which the state transitions

in the positive direction and negative direction respectively.

Definition 2.2.4 (Absorbing Process ). Given the free process
{
Z(t)

∣∣∣ t ≥ 0
}

and the

stopping time T0 = min
{
t
∣∣Z(t) = 0

}
, define the single (barrier) absorbing process

{
Q∗(t)

∣∣∣ t ≥ 0
}

to be

Q∗(t) ≡ Z
(
T0 ∧ t

)
≡ Z

(
min(T0, t)

)
(2.2.27)

Definition 2.2.5 (Single Barrier Absorbing Transition Probabilities). The single

barrier absorbing transition probabilitie are defined for all positive integers m and n

to be

Pm
{
Q∗(t) = n

}
≡ P

{
Q∗(t) = n|Q∗(0) = n

}

=





Pm
{
Q∗(t) = n, T0 > t

}
if m > 0 and n > 0,

0 if m = 0 and n > 0,

Pm
{
T0 ≤ t

}
if m > 0 and n = 0,

1 if m = n = 0.

d

dt
Pm
{
T0 ≤ t

}
=

d

dt
Pm
{
Q∗(t) = 0

}
= µ · Pm

{
Q∗(t) = 1

}
(2.2.28)
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This implies that

Pm
{
T0 ≤ t

}
= µ ·

∫ t

0

Pm
{
Q∗(s) = 1

}
ds (2.2.29)

Using linearity and symmetry, the absorbing process transition probabilities solve

the same forward equations as the free process.

Pm
{
Q∗(t) = n

}
= Pm

{
Z(t) = n

}
− β−2m · P−m

{
Z(t) = n

}
(2.2.30)

This implies

d

dt
Pm
{
Q∗(t) = n

}
=λ · Pm

{
Q∗(t) = n− 1

}
+ µ · Pm

{
Q∗(t) = n+ 1

}

− (λ+ µ) · Pm
{
Q∗(t) = n

}

and

d

dt
Pm
{
Q∗(t) = 1

}
= µ · Pm

{
Q∗(t) = 2

}
−(λ+ µ) · Pm

{
Q∗(t) = 1

}
(2.2.31)

Where Equation 2.2.31 is obtained using the following symmetries:

β−m−n · P−m
{
Z(t) = n

}
= βn+m · Pn

{
Z(t) = −m

}
=βn+m · Pm

{
Z(t) = −n

}

which implies

Pm
{
Q∗(t) = n

}
= Pm

{
Z(t) = n

}
−β2n · Pm

{
Z(t) = −n

}

and Pm
{
Q∗(t) = 0

}
= Pm

{
Z(t) = 0

}
−β0 · Pm

{
Z(t) = 0

}
= 0
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Similarly using linearity and symmetry, the absorbing process transition proba-

bilities solve the same backward equations as the free process.

Pm
{
Q∗(t) = n

}
= Pm

{
Z(t) = n

}
− β2n · Pm

{
Z(t) = −n

}
(2.2.32)

This implies

d

dt
Pm
{
Q∗(t) = n

}
=λ · Pm+1

{
Q∗(t) = n

}
+ µ · Pm−1

{
Q∗(t) = n

}

− (λ+ µ) · Pm
{
Q∗(t) = n

}
(2.2.33)

and

d

dt
P1

{
Q∗(t) = n

}
= λ · P2

{
Q∗(t) = n

}
−(λ+ µ) · P1

{
Q∗(t) = n

}

Where Equation 2.2.2 is obtained using the following symmetries:

β−m−n · P−m
{
Z(t) = n

}
= βn+m · Pn

{
Z(t) = −m

}
=βn+m · Pm

{
Z(t) = −n

}

which implies

Pm
{
Q∗(t) = n

}
= Pm

{
Z(t) = n

}
−β−2m · P−m

{
Z(t) = n

}

andP0

{
Q∗(t) = n

}
= P0

{
Z(t) = n

}
−β0 · P0

{
Z(t) = n

}
= 0

Next, we give the transition probabilities result for the single barrier absorbing

process. Moreover, we also give the absorbing process tail distribution.

Theorem 2.2.5 (Single Barrier Absorbing Transition Probabilities as Complex In-

tegrals). The Absorbing Process transition probabilities as complex integrals is given
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by the following integral:

Pm
{
Q∗(t) = n

}
= −β

n−m

πi
·
∮

|ω|=1

εm(ω) · εn(ω) · e−2γ·
(
δ(β)−δ(ω)

)
t dω

ω
(2.2.34)

Proof.

Pm
{
Q∗(t) = n

}
= Pm

{
Z(t) = n

}
− β−2m · P−m

{
Z(t) = n

}

=
1

2πi
·
∮

|ω|=r

[(
ω

β

)m−n
− β−2m ·

(
ω

β

)−m−n]
· e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω

=
β−m

2πi
·
∮

|ω|=r

(
ωm − ω−m

)
·
(
ω

β

)−n
· e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω

=
βn−m

πi
·
∮

|ω|=r
εm(ω) · ω−n · e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω

=
βn−m

πi
·
∮

|ω|=1

εm(ω) · ω
−n − ωn

2
· e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω

= −β
n−m

πi
·
∮

|ω|=1

εm(ω) · εn(ω) · e−2γ·
(
δ(β)−δ(ω)

)
t dω

ω
(2.2.35)

In the above equations, we performed the following transformation ω ↔ 1/ω using

the symmetry functions δ(ω) = δ(1/ω) and εn(ω) = εn(1/ω).

Theorem 2.2.6 (Single Barrier Absorbing Transition Probabilities as Real Integrals).

The Absorbing Process transition probabilities as complex integrals is given by the

following integral:

Pm
{
Q∗(t) = n

}
=
βn−m

π
·
∫ π

−π
sinmθ · sinnθ · e−2γ·

(
δ(β)−cos θ

)
t dθ (2.2.36)

31



Proof.

Pm
{
Q∗(t) = n

}
= −β

n−m

πi
·
∮

|ω|=1

εm(ω) · εn(ω) · e−2γ·
(
δ(β)−δ(ω)

)
t dω

ω

= −β
n−m

πi
·
∫ π

−π
εm(eiθ) · εn(eiθ) · e−2γ·

(
δ(β)−δ(eiθ)

)
t ie

iθdθ

eiθ

=
βn−m

π
·
∫ π

−π
sinmθ · sinnθ · e−2γ·

(
δ(β)−cos θ

)
t dθ (2.2.37)

Theorem 2.2.7 (Single Barrier Absorbing Time Distribution as Complex Integrals).

The Absorbing Process tail distribution as complex integrals is given by the following

integral:

Pm
{
T0 > t

}
=

(
1− 1

ρm

)+

− β−m

πi
·
∮

|ω|=1

εm(ω) · ε1(ω) · e−2γ·
(
δ(β)−δ(ω)

)
t

δ(β)− δ(ω)

dω

ω
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Proof.

Pm
{
T0 > t

}
=
∞∑

n=0


β
−m

πi
·
∮

|ω|=r>β

εm(ω) ·
(
ω

β

)−n
· e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω




=
β−m

πi
·
∮

|ω|=r>β

εm(ω) ·
∞∑

n=0

(
β

ω

)n
· e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω

=
2β−m

2πi
·
∮

|ω|=r>β

εm(ω) · 1

1− β/ω · e
−2γ·
(
δ(β)−δ(ω)

)
t dω

ω

= 2β−m · ε(β)+ +
2β−m

2πi
·
∮

|ω|=1

εm(ω) · e−2γ·
(
δ(β)−δ(ω)

)
t

1− β/ω
dω

ω

=

(
1− 1

β2m

)+

+
β−m

2πi
·
∮

|ω|=1

εm(ω)

(
1

1− β/ω −
1

1− βω

)
· e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω

=

(
1− 1

β2m

)+

+
β−m

2πi
·
∮

|ω|=1

εm(ω) · β · (1/ω − ω)

(1− β/ω) · (1− βω)
· e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω

=

(
1− 1

ρm

)+

− β−m

πi
·
∮

|ω|=1

εm(ω) · ε1(ω) · e−2γ·
(
δ(β)−δ(ω)

)
t

δ(β)− δ(ω)

dω

ω

Theorem 2.2.8 (Absorbing Process Tail Distribution as Real Integrals). The Ab-

sorbing Process tail distribution as real integrals is given by the following integral:

Pm
{
T0 > t

}
=

(
1− 1

ρm

)+

+
β−m

π
·
∫ π

−π

sinmθ · sin θ · e−2γ·
(
δ(β)−cos θ

)
t

δ(β)− cos θ
dθ (2.2.38)
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Proof.

Pm
{
T0 > t

}
=

(
1− 1

ρm

)+

− β−m

πi
·
∮

|ω|=1

εm(ω) · ε1(ω) · e−2γ·
(
δ(β)−δ(ω)

)
t

δ(β)− δ(ω)

dω

ω

=

(
1− 1

ρm

)+

− β−m

π
·
∮

|ω|=1

εm(eiθ) · ε1(eiθ) · e−2γ·
(
δ(β)−δ(eiθ)

)
t

δ(β)− δ(eiθ) dθ

=

(
1− 1

ρm

)+

+
β−m

π
·
∫ π

−π

sinmθ · sin θ · e−2γ·
(
δ(β)−cos θ

)
t

δ(β)− cos θ
dθ

Moreover,

min(ρ−m, 1) =
β−m

πi
·
∮

|ω|=1

εm(ω) · ε1(ω)

δ(β)− δ(ω)

dω

ω
= −β

−m

2π
·
∫ π

−π

sinmθ · sin θ
δ(β)− cos θ

dθ. (2.2.39)

Theorems 2.2.5, 2.2.6, 2.2.7, and 2.2.8 are special case of Baccelli et al. (1994).

The major contribution is new derivation using complex analysis.

2.2.3 Mλ/Mµ/1/∞ Queue Length (Reflecting) Process

Now consider the free process that gets reflected whenever it hits the origin and

then either gets constrained to either the positive integers Z+ ≡ {0, 1, 2, . . .} or the

negative integers Z− ≡ {. . . ,−2,−1, 0}.

Constrained on positive integers: Our transportation interpretation of the re-

flecting process is the same as the absorbing process except that we now added the

zero state. In the context of public transportation serves the reflecting process could

represent a bike-sharing station where customers are infinitely patient and are waiting

in line. And the bike station starts off with some people already in the line waiting

for service. Figure 2.8 shows the transient states of the absorbing free process at the

origin given a positive starting state. One interesting question is this setting is how
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long does it take to clear the queue, in other words, how long does it take to serve all

waiting customer.

0 1 . . .2
Q! Q + 1 Q! Q� 1

µ�

Figure 2.8: The reflecting process at the origin constrained on the positive integers.

The values λ and µ are the rates in which the state transitions in the positive direction

and negative direction respectively.

0 5000 10000 15000 20000 25000

t (Time)

0

50

100

150

200

250

300

Q
(t

)

Figure 2.9: The realizations of the reflected free process constrained on the positive

integers with λ = µ = 1, Z(0) = 0, and 0 < t < 24, 000.
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Figure 2.10: The plot of the steady-state mean and standard deviation of the reflected

free process constrained on the positive intergers where E
[
Q∞(t)

]
is the steady-state

mean, and σQ∞ is the steady-state standard deviation. For the simulation ∆t = 10−3,

N = 104 and 0 < t < 24. In (a) λ = 1, µ = 2 and Q(0) = 0. In (b) λ = 1, µ = 3 and

Q(0) = 0. In (c) λ = 1, µ = 3 and Q(0) = 3. In (d) λ = 1, µ = 4 and Q(0) = 2.

Constrained on negative integers: By symmetry of the free process, we can also

talk about the free process constrained on the negative integers. The interpretation of

the reflecting process is the same as the absorbing process except that we now added

the zero state. In the context of public transportation serves, the reflecting process

could represent a bikes-hare station where ”negative customers” are infinitely patient

and are waiting in line. In other words, bikes are sitting at the station waiting to be

rented. And the bike station starts off with some initial bike already at the station

waiting to be rented. Figure 2.11 shows the transient states of the absorbing Free
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Process at the origin given a negative starting state. One interesting question is this

setting is how long does it take to clear the queue, in other words, how long does it

take for the station to run out of bikes.

-2. . . -1 0
Q! Q + 1 Q! Q� 1

µ�

Figure 2.11: The reflecting process at the origin constrained on the negative integers.

The values λ and µ are the rates in which the state transitions in the positive direction

and negative direction respectively.

0 5000 10000 15000 20000 25000

t (Time)

−200

−175

−150

−125

−100

−75

−50

−25

0

Q
(t

)

Figure 2.12: The realizations of the reflected free process constrained on the positive

integers with λ = µ = 1 and Z(0) = 0, and 0 < t < 24, 000.
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Figure 2.13: The plot of the steady-state mean and standard deviation of the reflected

free process constrained on the negative intergers where E
[
Q∞(t)

]
is the steady-state

mean, and σQ∞ is the steady-state standard deviation. For the simulation ∆t = 10−3,

N = 104 and 0 < t < 24. In (a) λ = 2, µ = 1 and Q(0) = 0. In (b) λ = 3, µ = 1 and

Q(0) = 0. In (c) λ = 3, µ = 1 and Q(0) = −3. In (d) λ = 3, µ = 1 and Q(0) = −2.
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Algorithm 2: The M/M/1/∞ queue simulator

Input: Given arrival rate λ, service rate µ, initial state m, and stopping time

T .

Output: queue length process Q

1 Initialize time t = 0, starting state q = m, and create an empty list Q

while t ≤ T do

2 U1 ∼ U(0, 1)

3 t← t− log(U1)
λ+µ

if t > T then

4 Break

else

5 U2 ∼ U(0, 1)

if U2 <
λ

λ+µ
then

6 q = q + 1

else

7 q = max(q − 1, 0)

end

8 Q.append(q)

end

end

Figures 2.9 and 2.12 show the realization of the single barrier reflecting process,

constrained on positive and negative integers respectively. To validate the simulation

of the single barrier reflecting process given by the Algorithm 2, we compare the sim-

ulation results with the steady-state closed-form mean and standard deviation of the

free process as shown in Figures 2.10 and 2.13. As you can see, the simulation results
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closely approximate the theoretical closed-form results. We have the following prob-

abilistic symmetry (generally proven in Massey (1987)), also known as the reflection

around the boundary point for Z(0) = 0

P0

{
Z(t) = n

}
≡ P

{
Z(t) = n

∣∣∣Z(0) = 0
}

=
βn

π
·
∫ π

0

cos
(
−n · θ

)
· e−2·

(
α−γ·cos(θ)

)
t dθ

=
βn

π
·
∫ π

0

cos
(
n · θ

)
· e−2·

(
α−γ·cos(θ)

)
t dθ

= β2n ·
(
β−n

π

)
·
∫ π

0

cos
(
n · θ

)
· e−2·

(
α−γ·cos(θ)

)
t dθ

= β2n · P
{
Z(t) = −n

∣∣∣Z(0) = 0
}

≡ β2n · P0

{
Z(t) = −n

}
(2.2.40)

Using linearity, the reflecting process transition probabilites solve the same Kol-

mogorov backward equations as the free process.

Pm
{
Q(t) < n

}
= Pm

{
Z(t) < n

}
− β2n · Pm

{
Z(t) < −n

}
(2.2.41)

which implies that

P−1

{
Q(t) < n

}
= P−1

{
Z(t) < n

}
− β2n · P−1

{
Z(t) < −n

}

= P0

{
Z(t) < n+ 1

}
− β2n · P0

{
Z(t) < −n+ 1

}

= P0

{
Z(t) < n

}
− β2n · P0

{
Z(t) < −n

}
+ P0

{
Z(t) = n

}

− β2n · P0

{
Z(t) = −n

}

= P0

{
Q(t) < n

}
+ P0

{
Z(t) = n, T0 > t

}

= P0

{
Q(t) < n

}
(2.2.42)
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Similarly, using linearity, the reflecting process transition probabilities solve the

same Kolmogorov backward equations as the free process.

Pm
{
Q(t) < n

}
≡ Pm

{
Z(t) < n

}
− β2n · Pm

{
Z(t) < −n

}
,

P−1

{
Q(t) < n

}
= P0

{
Q(t) < n

}
,

and

d

dt
Pm
{
Z(t) < n

}
=λ ·

(
Pm+1

{
Z(t) < n

}
− Pm

{
Z(t) < n

})

+ µ ·
(
Pm−1

{
Z(t) < n

}
− Pm

{
Z(t) < n

})

which implies

d

dt
Pm
{
Q(t) < n

}
=λ ·

(
Pm+1

{
Q(t) < n

}
− Pm

{
Q(t) < n

})

+ µ ·
(
Pm−1

{
Q(t) < n

}
− Pm

{
Q(t) < n

})

and

d

dt
P0

{
Q(t) < n

}
= λ ·

(
P1

{
Q(t) < n

}
− P0

{
Q(t) < n

})

+ µ ·
(
P−1

{
Q(t) < n

}
− P0

{
Q(t) < n

})

= λ ·
(
P1

{
Q(t) < n

}
− P0

{
Q(t) < n

})

Expressing reflecting process transition probabilities in terms of absorbing process

transition probabilities

Pm
{
Q(t) < n

}
≡ Pm

{
Z(t) < n

}
− β2n · Pm

{
Z(t) < −n

}
,
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this implies

Pm
{
Q(t) < n

}
= Pm

{
Z(t) < n

}
− β2n · Pm

{
Z(t) < −n

}

= Pm+1

{
Z(t) < n+ 1

}
− β2n · Pm+1

{
Z(t) < −n+ 1

}

= Pm+1

{
Z(t) < n

}
− β2n · Pm+1

{
Z(t) < −n

}

+ Pm+1

{
Z(t) = n

}
− β2n · Pm+1

{
Z(t) = −n

}

= Pm+1

{
Q(t) < n

}
+ Pm+1

{
Z(t) = n, T0 > t

}

hence

Pm
{
Q(t) < n

}
=

∞∑

`=m+1

P`
{
Z(t) = n, T0 > t

}
(2.2.43)

Recall that the absorbing process probabilities as complex integrals

Pm
{
Z(t) = n, T0 > t

}
= Pm

{
Z(t) = n

}
− β2n · Pm

{
Z(t) = −n

}

=
1

2πi
·
∮

|ω|=r

[(
ω

β

)m−n
− β2n ·

(
ω

β

)m+n
]
· e−2·

(
α−γ·δ(ω)

)
t dω

ω

=
βn

2πi
·
∮

|ω|=r

(
ω

β

)m
·
(
ω−n − ωn

)
· e−2·

(
α−γ·δ(ω)

)
t dω

ω

= −β
n−m

πi
·
∮

|ω|=r
ωm · εn(ω) · e−2·

(
α−γ·δ(ω)

)
t dω

ω
(2.2.44)

Theorem 2.2.9 (Reflecting Process Transition Probabilities as Complex Integrals).

The reflecting process transition probabilities as complex integrals is given by the

following integral:

Pm
{
Q(t) < n

}
= (1− ρn)+ +

βn−m

πi
·
∮

|ω|=1

εn(ω) · εm(ω)− β · εm+1(ω)

(ω − β) · (1/ω − β)
· e−2·

(
α−γ·δ(ω)

)
t dω

ω

42



Proof.

Pm
{
Q(t) < n

}
=

∞∑

`=m+1

P`
{
Z(t) = n, T0 > t

}

= −
∞∑

`=m+1

βn−`

πi
·
∮

|ω|=r
ω` · εn(ω) · e−2·

(
α−γ·δ(ω)

)
t dω

ω

= − β
n

2πi
·
∮

|ω|=r<β

(
∞∑

`=m+1

(
ω

β

)`)
· εn(ω) · e−2·

(
α−γ·δ(ω)

)
t dω

ω

= − β
n

2πi
·
∮

|ω|=r<β

ωm+1/βm+1

1− ω/β · εn(ω) · e−2·
(
α−γ·δ(ω)

)
t dω

ω

=
βn−m

πi
·
∮

|ω|=r<β

εn(ω) · ω
m+1

ω − β · e
−2·
(
α−γ·δ(ω)

)
t dω

ω

= 2βn−m ·


−εn(ω)+ · βm +

1

2πi
·
∮

|ω|=1

εn(ω) · ωm · e−2·
(
α−γ·δ(ω)

)
t

ω − β dω




=
(
1− ρ2n

)+
+
βn−m

2πi
·
∮

|ω|=1

εn(ω) ·
(
ωm+1

ω − β −
ω−m−1

1/ω − β

)
· e−2·

(
α−γ·δ(ω)

)
t dω

ω

= (1− ρn)+ +
βn−m

2πi
·
∮

|ω|=1

εn(ω) · ω
m − ω−m − β · (ωm+1 − ω−m−1)

(ω − β) · (1/ω − β)
· e−2·

(
α−γ·δ(ω)

)
t dω

ω

= (1− ρn)+ +
βn−m

πi
·
∮

|ω|=1

εn(ω) · εm(ω)− β · εm+1(ω)

(ω − β) · (1/ω − β)
· e−2·

(
α−γ·δ(ω)

)
t dω

ω

Theorem 2.2.10 (Reflecting Process Transition Probabilities as Real Integrals). The

reflecting process transition probabilities as real integrals is given by the following

integral:

Pm
{
Q(t) = n

}
=
(

1− ρ
)+

· ρn

+
βn−m

π
·

π∫

−π

(
sinnθ − β · sin(n+ 1)θ

)
·
(

sinmθ − β sin(m+ 1)θ
)
· e−2·

(
α−γ·cos(θ)

)
t

1− 2β cos θ + β2
dθ
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Proof.

Pm
{
Q(t) < n

}
=
(

1− ρn
)+

+
βn−m

πi
·
∮

|ω|=1

εn(ω) · εm(ω)− β · εm+1(ω)

(ω − β) · (1/ω − β)
· e−2·

(
α−γ·δ(ω)

)
t dω

ω

=
(

1− ρn
)+

+
βn−m

π
·

π∮

−π

εn(eiθ) · εm(eiθ)− β · εm+1(eiθ)

(eiθ − β) · (e−iθ − β)
· e−2·

(
α−γ·δ(eiθ)

)
t dθ

=
(

1− ρn
)+

− βn−m

π
·

π∮

−π

sinnθ · sinmθ − β · sin(m+ 1)θ

1− 2β cos θ + β2
· e−2·

(
α−γ·cos θ

)
t dθ

and

Pm
{
Q(t) = n

}
= Pm

{
Q(t) < n+ 1

}
− Pm

{
Q(t) < n

}
(2.2.45)

Hence

Pm
{
Q(t) = n

}
=
(

1− ρ
)+

· ρn

+
βn−m

π
·

π∫

−π

(
sinnθ − β · sin(n+ 1)θ

)
·
(

sinmθ − β sin(m+ 1)θ
)
· e−2·

(
α−γ·cos(θ)

)
t

1− 2β cos θ + β2
dθ

The major contribution in Theorems 2.2.9, and 2.2.10 is new derivation using

complex analysis. Another closed-form representation of the free process transition

probabilities exists (Lajos, 1962). Next we explore operator approach to computing

these transition probabilities of the reflected process.
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Definition 2.2.6 (Left and Right Shift Operators for Row Vectors).

L =




0 0 0 · · ·

1 0 0
. . .

0 1 0
. . .

...
. . . . . . . . .




and R =




0 1 0 · · ·

0 0 1
. . .

0 0 0
. . .

...
. . . . . . . . .




and

(
I −L

)−1
=




1 0 0 · · ·

1 1 0
. . .

1 1 1
. . .

...
. . . . . . . . .




and (I −R)−1 =




1 1 1 · · ·

0 1 1
. . .

0 0 1
. . .

...
. . . . . . . . .




where LT = R and RL = I 6= LR

We have the following

[{
Q = 0

} {
Q = 1

}
· · ·
]
·
(
I −L

)−1
=
[{
Q ≥ 0

} {
Q ≥ 1

}
· · ·
]

(2.2.46)

[{
Q = 0

} {
Q = 1

}
· · ·
]
·
(
I −R

)−1
=
[{
Q ≤ 0

} {
Q ≤ 1

}
· · ·
]

(2.2.47)

The Markov Generators for M/M/1 Queues or Single Barrier Reflecting Process
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A =




−λ λ 0 · · ·

µ −(λ+ µ) λ
. . .

0 µ −(λ+ µ)
. . .

. . . . . . . . . . . .




= λR+ µL− λI − µLR

= λR+ µL− λRL− µLR

=
(
λR− µLR

)
·
(
I −L

)

The sub-Markov generators for single barrier absorbing process as the dual to

single barrier relfection process

(I −L)−1 ·AT = A · (I −R)−1 = λR− µLR

So

AT = (I −L) ·
(
λR− µLR

)
· (I −L) = λR− µLR2 − (λ+ µ)LR

which implies that

A = λL− µL2R− (λ+ µ)LR

=




0 0 0 · · ·

λ −(λ+ µ) µ
. . .

0 λ −(λ+ µ)
. . .

. . . . . . . . . . . .
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Duality between a single barrier reflecting process and its complimentary single barrier

absorbing process

Pm
{
Q(t) ≥ n

}
= Pn

{
Q∗(t) ≤ m

}

We get the following similarity transformation equivalence

A ·
(
I −R

)−1
=
(
I −R

)−1
AT

and exp tA ·
(
I −R

)−1
=
(
I −R

)−1
exp tAT

Again we now verify that the single Barrier reflecting transition probabilities using

the operator approach.

Theorem 2.2.11 (Single Barrier Reflecting Process Transition probabilities As a

Complex Integral via Duality). The single barrier reflecting process transition prob-

abilities are given by the following integral:

Pm
{
Q(t) = n

}
= (1− ρ)+ ρn

+
βn−m

πi
·
∮

|ω|=1

(
εm(ω)− β · εn+1(ω)

)
·
(
εm(ω)− β · εm+1(ω)

)

2 · β
(
δ(β)− δ(ω)

) · e−2·
(
α−γ·δ(ω)

)
t dω

ω
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Proof.

Pm
{
Q(t) ≥ n

}
= Pn

{
Q∗(t) = `

}

= Pn
{
Q∗(t) = 0

}
+

m∑

`=1

Pn
{
Q∗(t) ≤ m

}

= λ

∫ t

0

Pn
{
Q∗(s) = 1

}
ds+

m∑

`=1

Pn
{
Q∗(t) ≤ m

}

= −λ
∫ t

0

(
βn−1

πi
·
∮

|ω|=1

εn(ω) · ε1(ω) · e−2γ·
(
δ(β)−δ(ω)

)
s dω

ω

)
ds

−
m∑

`=1

(
βn−m

πi
·
∮

|ω|=1

εn(ω) · ε`(ω) · e−2γ·
(
δ(β)−δ(ω)

)
t dω

ω

)

= −λ · β
n−1

πi

∮

|ω|=1

εn(ω) · ε1(ω)

(∫ t

0

e−2γ·
(
δ(β)−δ(ω)

)
s ds

)
dω

ω

− βn

πi

∮

|ω|=1

εn(ω) ·
(

m∑

`=1

β−`ε`(ω)

)
· e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω

= −λ · β
n−1

πi

∮

|ω|=1

εn(ω) · ε1(ω)


 1− e−2·

(
α−γ·δ(ω)

)
t

2γ ·
(
δ(β)− δ(ω)

)


 dω

ω

− βn

πi

∮

|ω|=1

εn(ω) ·


ε1(ω) + β−m−1 · εm(ω)− β−m · εm+1(ω)

2 ·
(
δ(β)− δ(ω)

)


 · e−2γ·

(
δ(β)−δ(ω)

)
t dω

ω

= min(1, ρn)

+
βn−m

πi
·
∮

|ω|=1

εn(ω) ·

(
εm(ω)− β · εm+1(ω)

)

2 · β
(
δ(β)− δ(ω)

) · e−2·
(
α−γ·δ(ω)

)
t dω

ω

which implies that

Pm
{
Q(t) = n

}
= (1− ρ)+ ρn (2.2.48)

+
βn−m

πi
·
∮

|ω|=1

(
εm(ω)− β · εn+1(ω)

)
·
(
εm(ω)− β · εm+1(ω)

)

2 · β
(
δ(β)− δ(ω)

) · e−2·
(
α−γ·δ(ω)

)
t dω

ω
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Theorem 2.2.12 (Single Barrier Reflecting Process Transition probabilities As a

Real Integral via Duality). The single barrier reflecting process transition probabili-

ties are given by the following integral:

Pm
{
Q(t) = n

}
= (1− ρ)+ ρn

+
βn−m

πi
·
∮

|ω|=1

(
εm(ω)− β · εn+1(ω)

)
·
(
εm(ω)− β · εm+1(ω)

)

2 · β
(
δ(β)− δ(ω)

) · e−2·
(
α−γ·δ(ω)

)
t dω

ω

Proof.

Pm
{
Q(t) = n

}
= (1− ρ)+ ρn

+
βn−m

πi
·
∮

|ω|=1

(
εm(ω)− β · εn+1(ω)

)
·
(
εm(ω)− β · εm+1(ω)

)

2 · β
(
δ(β)− δ(ω)

) · e−2·
(
α−γ·δ(ω)

)
t dω

ω

= (1− ρ)+ ρn

+
βn−m

πi

π∫

−π

(
sinnθ − β · sin(n+ 1)θ

)
·
(

sinmθ − β · sin(m+ 1)θ
)

1 + β2 − 2β cos θ
· e−2γ·

(
δ(β)−δ(ω)

)
t dθ

2.2.4 Two Barrier Absorbing Process

An absorbing process at the boundary points {0, k} is a Markov chain in which

it is impossible to leave the boundary states {0, k}, and any state could reach the

boundary states after some number of steps, with positive probability. We classify the

state space Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} of the free process into two classes:

Absorbing state 0, k and transient states {1, 2, . . . , k − 2, k − 1}. The absorbing

process is the same as the free process that starts positive and when the process hits

boundary states {0, k}, it stays there forever. If the process starts positive on the

state space {0, 1, 2, . . . , k− 1, k}, then the process would never get to visit the states
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{. . . ,−3,−2,−1} or the states {k+1, k+2, k+3 . . . }, so we could also consider those

states as implicitly absorbing.

Our transportation interpretation of the absorbing free process at the boundary

points {0, k}, in the context of public transportation serves, is a bike-sharing station

model having k secured bicycle parking docks. One group of customers arrive at

rate λ to return a rented bicycle if an empty parking dock is available. And the

second group of customers arrives at rate µ to rent an available bicycle. Moreover,

the bike station starts with some initial number of bicycles already at the station

but the station also has some empty bicycle parking dock. Absorption at state zero

means there is no available bike. Whereas absorption at state k means that there

is no available parking dock at the bicycle station. Figure 2.14 shows the transient

states of the absorbing Free Process at the boundary points 0 and k given a positive

starting state. One interesting question is this setting, relating to measure of the

quality of service at a bike-sharing station, is how long does it take for there to be

empty bicycles at the station or how long does it take for there to be no available

docks at the station.

1 2 . . . k-2 k-1
Q! Q + 1 Q! Q� 1

µ�

Figure 2.14: The transient states of the absorbing free process at the boundary points

0 and k. The values λ and µ are the rates in which the state transitions in the positive

direction and negative direction respectively.

Definition 2.2.7 (Two Barrier Absorbing Process). Given the free process
{
Z(t)

∣∣∣ t ≥

0
}

and the stopping time T0,k = min
{
t
∣∣Z(t) = 0 or k

}
, define the double barrier
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absorbing process
{
Q∗k(t)

∣∣∣ t ≥ 0
}

to be

Q∗k(t) ≡ Z
(
T0,k ∧ t

)
≡ Z

(
min(T0,k, t)

)
(2.2.49)

Definition 2.2.8 (Double Barrier Absorbing Transition Probabilities). The double

barrier absorbing transition probabilitie are defined for all positive integers 0 ≤ m ≤ k

and 0 ≤ n ≤ k to be

Pm
{
Q∗k(t) = n

}
≡ P

{
Q∗k(t) = n|Q∗k(0) = n

}

=





Pm
{
Q∗k(t) = n, T0,k > t

}
if 0 < m < k and 0 < n < k,

0 if m = 0 or k with n 6= m,

Pm
{
Q∗k(t) = n, T0,k ≤ t

}
if m 6= n with n = 0 or k,

1 if m = n = 0 or k.

By the linearity and symmetry, the two barrier absorbing transition probabilities

solve the same forward equations as the free process

Pm
{
Z(t) = −n

}
= Pn

{
Z(t) = −m

}
=β−2(m+n) · P−m

{
Z(t) = n

}

implies

Pm
{
Q∗k(t) = n

}
=

∞∑

`=−∞

β2k` ·
(
Pm+2k`

{
Z(t) = n

}
− β−2m · P−m+2k`

{
Z(t) = n

})

=
∞∑

`=−∞

(
β2k` · Pm

{
Z(t) = n

}
− β−2m+2k` · β−2(−m−n+2k`) · Pm

{
Z(t) = −n+ 2k`

})

=
∞∑

`=−∞

β−2k` ·
(
Pm
{
Z(t) = n+ 2k`

}
− β2n · Pm

{
Z(t) = −n+ 2k`

})
.
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So

Pm
{
Q∗k(t) = 0

}
=

∞∑

`=−∞

β−2k` ·
(
Pm
{
Z(t) = 2k`

}
− Pm

{
Z(t) = 2k`

})
= 0

and

Pm
{
Q∗k(t) = k

}
=

∞∑

`=−∞

β−2k` ·
(
Pm
{
Z(t) = k + 2k`

}
− β2k · Pm

{
Z(t) = −k + 2k`

})

implies

∞∑

`=−∞

β−2k` · Pm
{
Z(t) = k + 2k`

}
=

∞∑

`=−∞

β−2k(`−1) · Pm
{
Z(t) = k + 2k(`− 1)

}

=
∞∑

`=−∞

β−2k`+2k · Pm
{
Z(t) = −k + 2k`

}
.

(2.2.50)

Hence , we have

Pm
{
Q∗k(t) = k

}
= 0.

Similarly, by the linearity and symmetry, the two barrier absorbing transition

probabilities solve the same backward equations as the free process

P0

{
Q∗k(t) = n

}
=

∞∑

`=−∞

β2k` ·
(
P2k`

{
Z(t) = n

}
− P2k`

{
Z(t) = n

})
= 0

and

Pm
{
Q∗k(t) = n

}
=

∞∑

`=−∞

β2k` ·
(
Pk+2k`

{
Z(t) = n

}
− β−2k · P−k+2k

{
Z(t) = n

})
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implies

∞∑

`=−∞

β2k` · Pk+2k`

{
Z(t) = n

}
=

∞∑

`=−∞

β2k(`−1) · Pk+2k(`−1)

{
Z(t) = n

}

=
∞∑

`=−∞

β2k`−2k · P−k+2k`

{
Z(t) = n

}
.

Hence, we have

Pm
{
Q∗k(t) = n

}
= 0.

We define the following argument principle that we will use to derive the transition

probabilities of the absorbing process.

Definition 2.2.9 (Argument principle). Let f and g have the same analytic domain

Ω with Ω ≡ ∂Ω. For all a ∈ Ω where f(a) is a unique value for Ω, then we have

g(a) =
1

2πi

∫

γ

g(z) · f ′(z)

f(z)− f(a)
dz (2.2.51)

In what follows, we present the two barrier absorbing transition probabilities as

both complex and real integrals.

Theorem 2.2.13 (Two Barrier Absorbing Transition Probabilities as a Complex

Sum). The two barrier absorbing transition probabilities are given by the following

sum:

Pm
{
Q∗k(t) = n

}
= −β

n−m

πi
·




∮

|ω|=r+>1

ω2k

ω2k
· ω

m · εn(ω) · e−2·
(
α−γ·δ(ω)

)
·t

1− ω−2k

dω

ω

+

∮

|ω|=r+<1

ωm+2k · εn(ω) · e−2·
(
α−γ·δ(ω)

)
·t

1− ω2k

dω

ω
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Proof.

Pm
{
Q∗k(t) = n

}
=

∞∑

`=−∞

β−2k` ·
(
Pm
{
Z(t) = n+ 2k`

}
− β2n · Pm

{
Z(t) = −n+ 2k`

})

=
βn−m

2πi
·
∞∑

`=−∞

∮

|ω|=r(`)

(
ωm−2k`−n − ωm−2k`+n

)
· e−2·

(
α−γ·δ(ω)

)
·t dω

ω

= −β
n−m

πi
·
∞∑

`=−∞

∮

|ω|=r(`)

ωm−2k`εn(ω) · e−2·
(
α−γ·δ(ω)

)
·t dω

ω

= −β
n−m

πi
·




∮

|ω|=r+>1

ωm

(
∞∑

`=0

ω−2k`

)
· εn(ω) · e−2·

(
α−γ·δ(ω)

)
·t dω

ω

+

∮

|ω|=r+<1

ωm

(
−1∑

`=−∞

ω−2k`

)
· εn(ω) · e−2·

(
α−γ·δ(ω)

)
·t dω

ω




= −β
n−m

πi
·




∮

|ω|=r+>1

ω2k

ω2k
· ω

m · εn(ω) · e−2·
(
α−γ·δ(ω)

)
·t

1− ω−2k

dω

ω

+

∮

|ω|=r+<1

ωm+2k · εn(ω) · e−2·
(
α−γ·δ(ω)

)
·t

1− ω2k

dω

ω




Theorem 2.2.14 (Two Barrier Absorbing Transition Probabilities as a Real Sum).

The two barrier absorbing transition probabilities are given by the following sum:

Pm
{
Q∗k(t) = n

}
=

2βn−m

k
·
k−1∑

`=0

sin
mπ`

k
· sin nπ`

k
· e−2·

(
α−γ·cos π`

k

)
t
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Proof.

Pm
{
Q∗k(t) = n

}
= −β

n−m

πi
·




∮

|ω|=r+>1

ω2k

ω2k
· ω

m · εn(ω) · e−2·
(
α−γ·δ(ω)

)
·t

1− ω−2k

dω

ω

+

∮

|ω|=r+<1

ωm+2k · εn(ω) · e−2·
(
α−γ·δ(ω)

)
·t

1− ω2k

dω

ω




= −β
n−m

πi
·
k−1∑

`=0

1

2πi

∮

|ω−ω`2k|=η

ωm · εn(ω) · e−2·
(
α−γ·δ(ω)

)
·t · 2kω2k−1

ω2k − 1
dω

= −β
n−m

πi
·
k−1∑

`=0

(
ω`2k
)m · εn(ω`2k) · e−2·

(
α−γ·δ(ω`2k)

)
·t (Argument Principle)

= −2βn−m

πi
·
k−1∑

`=0

εm(ω`2k) · εn(ω`2k) · e−2·
(
α−γ·δ(ω`2k)

)
·t

=
2βn−m

k
·
k−1∑

`=0

sin
mπ`

k
· sin nπ`

k
· e−2·

(
α−γ·cos π`

k

)
t
.

Moreover, the two barriers absorbing time distribution is given as follows:

Theorem 2.2.15 (Two Barrier Absorbing Time Distributions as a Real Sum). The

two barrier absorbing time distributions are given by the following sum:

Pm
{
T0,k > t

}
=

1

k · βm ·
k−1∑

`=1

sin
π`m

k
· sin π`

k
·

(
1 + βk · (−1)`

)
· e−2γ·

(
δ(β)−cos π`

k

)
t

δ(β)− cos π`
k

(2.2.52)

Proof.

− d

dt
Pm
{
T0,k > t

}
= λPm

{
Q∗k(t) = k − 1

}
− µPm

{
Q∗k(t) = 1

}
(2.2.53)
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implies that

Pm
{
T0,k > t

}
= λ ·

∫ ∞

t

Pm
{
Q∗k(s) = k − 1

}
ds− µ ·

∫ ∞

t

Pm
{
Q∗k(s) = 1

}
ds

= λ · β
k−1−m

k
·
k−1∑

`=1

sin π`m
k
· sin π`(k−1)

k

α− γ · cos π`
k

· e−2·
(
α−γ·cos π`

k

)
t

+ µ · β
1−m

k
·
k−1∑

`=1

sin π`m
k
· sin π`

k

α− γ · cos π`
k

· e−2·
(
α−γ·cos π`

k

)
t

=
1

k · βm ·
k−1∑

`=1

sin
π`m

k
· sin π`

k
·

(
1 + βk · (−1)`

)
· e−2γ·

(
δ(β)−cos π`

k

)
t

δ(β)− cos π`
k

.

Theorems 2.2.13, 2.2.14, and 2.2.15 are special case of Baccelli et al. (1994). The

major contribution is new derivation using complex analysis.

2.2.5 Mλ/Mµ/1/k Queue Length (Reflecting) Process

Now consider the free process that gets reflected whenever it hits the boundary points

0 and k and then gets constrained to the positive integers {0, 1, 2, . . . , k − 1, k}.

Our interpretation of the reflecting process at the boundary points 0 and k is the

same as the absorbing process at the boundary points 0 and k except that we now

added two states {0, k} to the state space. In the context of public transportation

serves the reflecting process could represent a bike-sharing station model having k

secured bicycle parking docks. One group of customers arrive at rate λ to return

a rented bicycle if an empty parking dock is available. And the second group of

customers arrives at rate µ to rent an available bicycle. Moreover, the bike station

starts with some bicycle already at the station but the station also has some empty

bicycle parking dock. The reflection at the boundary states means we restrict the free

process from the original state space Z ≡ {. . . ,−2,−1, 0, 1, 2, . . . } to the new state
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space {0, 1, 2, . . . , k − 1, k}. Figure 2.15 shows the transient states of the absorbing

Free Process at the boundary points 0 and k given a positive starting state.

0 1 . . . k-1 k
Q! Q + 1 Q! Q� 1

µ�

Figure 2.15: The transient states of the reflecting process at the boundary points 0

and k. The values λ and µ are the rates in which the state transitions in the positive

direction and negative direction respectively.
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t (Time)

0.0
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Q
(t

)

Figure 2.16: The realizations of the reflected free process with λ = µ = 1, Z(0) = 0,

0 < t < 2400 and capacity k = 20.
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Figure 2.17: The plot of the steady-state mean and standard deviation of the reflected

free process where E
[
Q∞(t)

]
is the steady-state mean, and σQ∞ is the steady-state

standard deviation. For the simulation ∆t = 10−3, sample size N = 104, time range

0 < t < 24 and capacity k = 20. In (a) , λ = 1, µ = 2, and Q(0) = 0. In (b) , λ = 1,

µ = 3, and Q(0) = 0. In (c) , λ = 1, µ = 3, and Q(0) = 4. In (d) , λ = 1, µ = 4, and

Q(0) = 2. In (e) , λ = 5, µ = 1, and Q(0) = 16. In (f) , λ = 5, µ = 1, and Q(0) = 10.
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Algorithm 3: The Mλ/Mµ/1/k queue simulator

Input: Given arrival rate λ, service rate µ, initial state m, capacity of the

queue k and stopping time T .

Output: queue length process Q

1 Initialize time t = 0, starting state q = m and create an empty list Q

while t ≤ T do

2 U1 ∼ U(0, 1)

3 t← t− log(U1)
λ+µ

if t > T then

4 Break

else

5 U2 ∼ U(0, 1)

if U2 <
λ

λ+µ
then

6 q = min(q + 1, k)

else

7 q = max(q − 1, 0)

end

8 Q.append(q)

end

end

Figure 2.16 shows the realization of the two barrier reflecting process, starting at

the origin, as a function of time. To validate the simulation of the two barrier re-

flecting process given by the Algorithm 3, we compare the simulation results with the

steady-state closed-form mean and standard deviation of the free process as shown

in Figure 2.17. As you can see, the simulation results closely approximate the the-
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oretical closed-form results. Next, we explore the operator approach to computing

transition probabilities of the two barrier reflected process. To do this, we first define

shift operators and their properties.

Definition 2.2.10 (Left and Right Shift Operators for k+1 Dimensional Row Vec-

tors).

L =




0 0 0 · · · 0 0

1 0 0
. . . 0 0

0 1 0
. . . 0 0

...
. . . . . . . . . . . . . . .

0 0 0
. . . 0 0

0 0 0
. . . 1 0




and R =




0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
. . . . . . . . . . . . . . .

0 0 0 · · · 0 1

0 0 0 · · · 0 0




and

(
I −L

)−1
=




1 0 0 · · · 0 0

1 1 0
. . . 0 0

1 1 1
. . . 0 0

...
. . . . . . . . . . . . . . .

1 1 1
. . . 1 0

1 1 1
. . . 1 1




and (I −R)−1 =




1 1 1 · · · 1 1

0 1 1
. . . 1 1

0 0 0
. . . 1 1

...
. . . . . . . . . . . . . . .

0 0 0 · · · 1 1

0 0 0 · · · 0 1




where LT = R, LRL = L, RLR = R, and Lk+1 = Rk+1 = 0.

We have the following

[{
Q = 0

} {
Q = 1

}
· · ·

{
Q = k

}]
·
(
I −L

)−1
=
[{
Q ≥ 0

} {
Q ≥ 1

}
· · ·

{
Q ≥ k

}]

[{
Q = 0

} {
Q = 1

}
· · ·

{
Q = k

}]
·
(
I −R

)−1
=
[{
Q ≤ 0

} {
Q ≤ 1

}
· · ·

{
Q ≤ k

}]
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The Markov Generators for M/M/1/k Queues or Double Barrier Reflecting Pro-

cess or kth Two barrier reflecting process

A =




−λ λ 0 · · · 0 0

µ −(λ+ µ) λ
. . . 0 0

0 µ −(λ+ µ)
. . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 −(λ+ µ) λ

0 0 0 0 µ −µ




= λR+ µL− λRL− µLR

=
(
λR− µLR

)
·
(
I −L

)
(2.2.54)

The sub-Markov generators for k + 1st two barrier absorbing process as the dual

to kth double barrier relfection process

A = (I −R)−1 ·AT · (I −R) =
(
λR− µLR

)
· (I −R) = λR+ µLR2.

Transition probabilities for the dual process. We get the following similarity trans-

formation equivalence

A ·
(
I −R

)−1
=
(
I −R

)−1
AT (2.2.55)

Equation 2.2.55 implies

exp tA ·
(
I −L

)−1
=
(

exp tA ·
(
I −R

)−1
)T

(2.2.56)
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And Equation 2.2.56 implies

Pm
{
Qk(t) ≥ n

}
= Pn

{
k −Q∗k+1(t) ≤ m

}
= Pn

{
Q∗k+1(t) ≥ k −m

}
.

The dual of a kth two barrier reflecting process and its complimentary k + 1st two

barrier absorbing process is given by:

Pm
{
Qk(t) ≥ n

}
= Pn

{
k + 1−Q∗k+1(t) ≤ m

}
= Pn

{
Q∗k+1(t) ≥ k + 1−m

}
. (2.2.57)

Moreover, the following two Equations are equivalent:

d

dt
Pn
{
k + 1−Q∗k+1(t) = 0

}
= λ · Pn

{
k + 1−Q∗k+1(t) = 1

}

m
d

dt
Pn
{
Q∗k+1(t) = k + 1

}
= λ · Pn

{
Q∗k+1(t) = k

}
.

(2.2.58)

We also have

P0

{
Qk+1(t) ≥ n

}
= Pn

{
k + 1−Q∗k+1(t) =0

}
= λ ·

∫ t

0

Pn
{
k + 1−Q∗k+1(s) = 1

}
ds

and (2.2.59)

d

dt
Pn
{
Q∗k+1(t) = k + 1

}
= λ · Pn

{
Q∗k+1(t) = k

}
.

(2.2.60)

Hence,

Pm
{
Qk(t) ≥ n

}
= Pn

{
k + 1−Q∗k+1(t) ≤ m

}

= λ ·
∫ t

0

Pn
{
k + 1−Q∗k+1(s) = 1

}
ds+

m∑

`=1

Pn
{
k + 1−Q∗k+1(s) = `

}
.
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Finally, we now give the transition probabilities of the two barrier reflecting process

as the finite sum of trigonometric functions.

Theorem 2.2.16 (Double Barrier Reflecting ProcessTransition Probabilities As a

Real Sum). The double barrier reflecting process transition probabilities are given by

the following sums:

Pm
{
Qk(t) = n

}
=

(1− ρ) · ρn
1− ρk+1

− 2βn−m

k + 1
·

k∑

`=1

(
sin nπ`

k+1
− β · sin (n+1)π`

k+1

)
·
(

sin mπ`
k+1
− β · sin (m+1)π`

k+1

)

1 + β2 − 2β cos π`
k+1

· e−2γ·
(
δ(β)−cos π`

k+1

)
t
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Proof.

Pm
{
Qk(t) ≥ n

}
= Pk+1−n

{
k + 1−Q∗k+1(t) ≤ m

}

= µ ·
∫ t

0

Pk+1−n
{
Q∗k+1(s) = k

}
ds+

m∑

ν

Pk+1−n
{
Q∗k+1(s) = k + 1− ν

}

= −µ ·
∫ t

0

(
2βn−1

k + 1
·

k∑

`=1

εk+1−n
(
ω`2k+2

)
· εk
(
ω`2k+2

)
· e−2γ·

(
δ(β)−δ(ω`2k+2)

)
s

)
ds

−
m∑

ν=1

2βn−ν

k + 1
·

k∑

`=1

εk+1−n
(
ω`2k+2

)
· εk+1−ν

(
ω`2k+2

)
· e−2γ·

(
δ(β)−δ(ω`2k+2)

)
s

= −µ ·
∫ t

0

(
2βn−1

k + 1
·

k∑

`=1

εn
(
ω`2k+2

)
· ε1
(
ω`2k+2

)
· e−2γ·

(
δ(β)−δ(ω`2k+2)

)
s

)
ds

−
m∑

ν=1

2βn−ν

k + 1
·

k∑

`=1

εn
(
ω`2k+2

)
· εν
(
ω`2k+2

)
· e−2γ·

(
δ(β)−δ(ω`2k+2)

)
s

= −λ · 2βn−1

k + 1
·

k∑

`=1

εn
(
ω`2k+2

)
· ε1
(
ω`2k+2

)
·
(

1− e−2γ·
(
δ(β)−δ(ω`2k+2)

)
s

)

2γ ·
(
δ(β)− δ(ω`2k+2)

)

−
m∑

ν=1

2βn

k + 1
·

k∑

`=1

εn
(
ω`2k+2

)
·
(

m∑

ν=1

β−νεν(ω
`
2k+2)

)
· e−2γ·

(
δ(β)−δ(ω`2k+2)

)
t

= −λ · 2βn−1

k + 1
·

k∑

`=1

εn
(
ω`2k+2

)
· ε1
(
ω`2k+2

)
·
(

1− e−2γ·
(
δ(β)−δ(ω`2k+2)

)
s

)

2γ ·
(
δ(β)− δ(ω`2k+2)

)

− 2βn

k + 1
·

k∑

`=1

εn
(
ω`2k+2

)
·
(
ε1
(
ω`2k+2

)
+ β−m−1 · εm

(
ω`2k+2

)
− β−m · εm+1

(
ω`2k+2

)

2 ·
(
δ(a)− δ(ω`2k+2)

)
)

· e−2γ·
(
δ(β)−δ(ω`2k+2)

)
t

= −2βn−1

k + 1
·

k∑

`=1

εn
(
ω`2k+2

)
· ε1
(
ω`2k+2

)

2β ·
(
δ(β)− δ(ω`2k+2)

)

− 2βn−m

k + 1
·

k∑

`=1

εn
(
ω`2k+2

)
·
(
εm
(
ω`2k+2

)
− β · εm+1

(
ω`2k+2

)

2β ·
(
δ(β)− δ(ω`2k+2)

)
)
· e−2γ·

(
δ(β)−δ(ω`2k+2)

)
t

=
ρn ·

(
1− ρk+1−n)

1− ρk+1

− 2βn−m

k + 1
·

k∑

`=1

εn
(
ω`2k+2

)
·
(
εm
(
ω`2k+2

)
− β · εm+1

(
ω`2k+2

)

2β ·
(
δ(β)− δ(ω`2k+2)

)
)
· e−2γ·

(
δ(β)−δ(ω`2k+2)

)
t
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The major contribution in Theorem 2.2.16 is new derivation using complex anal-

ysis. Another closed-form representation of the free process transition probabilities

exists (Lajos, 1962).

Operator Approach to Queue Analysis

We further explore the operator approach to Mλ/Mµ/1/k analysis. The ultimate

goal of introducing this operator approach is to map some of the results developed

for the reflecting processes to other types of queueing process, specifically absorbing

processes.

Definition 2.2.11 (Similar matrices). In linear algebra, two n-by-n matrices A and

B are similar if there exists an invertible n-by-n matrix Q such that

B = Q−1AQ (2.2.61)

Similarity Transformation

Define en for n ∈ Z to be the nth unit basis vector. In addition, we define the right

and the left shift operators which we denote as R and L respectively. The right

and the left shift operators can be defined in terms of en’s , where enR = en+1 and

enL = en−1. For the finite capacity Mλ/Mµ/1/k, the right shift and the left shift

operators can be defined in terms of en’s as follows:

enR =





en+1 n < k

0 n = k
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and the left shift is given by

enL =





en−1 n > 0

0 n = 0,

where en is the standard basis in RK , in other words en = [0, . . . , 0, 1, 0, . . . , 0] is the

unit vector with all components equal to 0, except the nth component which is 1.

For example the left-shift and right-shift matrix for the identity matrix I6×6

I6×6L =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0




and I6×6R =




0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0




(2.2.62)

Corollary 2.2.17. The left-shift and right-shift operators satisfy the following iden-

tities RLR = R and LRL = L.

Proof. From the definition the left-shift and right-shift operators, it follows that

RLR = R, and LRL = L.

Remark 2.2.2. It turns out that the left L and right R shift operators are nilpotent

matrix. In linear algebra, a nilpotent matrix is a square matrix M such that Nk = 0

for some positive integer k. The smallest such k is often called the index of the matrix

M . So we have (I −L) and (I −R) are invertible.

Lemma 2.2.18. Let A be the Markov generator for the queue length process
{
Q(t)

∣∣t ≥ 0
}

associated with Mλ/Mµ/1/k queue. There exists matrices U ≡ I −R
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and V ≡ I −L, such that the generator can be decomposed as

UAU−1 =




0 qTλ

0 Q


 and V AV −1 =



Q 0

qTµ 0


 (2.2.63)

where

qλ =




λ

0

...

0



, qµ =




0

...

0

µ



, (2.2.64)

and

Q =




−(λ+ µ) λ 0 0 · · · 0

µ −(λ+ µ) λ 0 · · · 0

0 µ −(λ+ µ) λ · · · 0

...
. . . . . . . . .

...

0 · · · 0 µ −(λ+ µ) λ

0 · · · 0 0 µ −(λ+ µ)




(2.2.65)

Proof. Using the left-shift and right-shift operators, we can rewrite the Markov gen-

erator A for the queue-length process for Mλ/Mµ/1/k as follows:

A = µR+ λL− µRL− λLR

= µ(RLR) + λL− µRL− λLR (by the identity of right operator)

= (λL− µRL)(I −R) (by factoring like terms) (2.2.66)
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Let

U = I −R

=




1 0 0 0 · · · 0

−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

...
. . . . . .

...

0 0 0 −1 1 0

0 0 0 0 −1 1




(2.2.67)

and

U−1 =
(
I −R

)−1

=




1 0 0 0 · · · 0

1 1 0 0 · · · 0

1 1 1 0 · · · 0

...
. . . . . .

...

1 1 1 1 1 0

1 1 1 1 1 1




(2.2.68)
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This implies that

UAU−1 = (I −R)A(I −R)−1

= (I −R)
[
(λL− µRL)(I −R)

]
(I −R)−1

= (I −R)
(
λL− µRL

)

=




0 λ 0 0 0 · · · 0

0 −(λ+ µ) λ 0 0 · · · 0

0 µ −(λ+ µ) λ 0 · · · 0

0 0 µ −(λ+ µ) λ · · · 0

0
...

. . . . . . . . .
...

0 0 · · · 0 µ −(λ+ µ) λ

0 0 · · · 0 0 µ −(λ+ µ)




=




0 qTλ

0 Q


 (2.2.69)

Similarly, using the left-shift and right-shift operators, we can also rewrite the

Markov generator A for the queue-length process for Mλ/Mµ/1/k as follows:

A = µR+ λL− µRL− λLR

= µR+ λ(LRL)− µRL− λLR (by the identity of right operator)

= (µR− λLR)(I −L) (by factoring like terms)

(2.2.70)
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Let

V = I −L (2.2.71)

=




1 −1 0 0 · · · 0

0 1 −1 0 · · · 0

0 0 1 −1 · · · 0

...
. . . . . .

...

0 0 0 0 1 −1

0 0 0 0 0 1




(2.2.72)

and

V −1 =
(
I −L

)−1
(2.2.73)

=




1 1 1 1 · · · 1

0 1 1 1 · · · 1

0 0 1 1 · · · 1

...
. . . . . .

...

0 0 0 0 1 1

0 0 0 0 0 1




(2.2.74)
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This implies that

V AV −1 = (I −L)A(I −L)−1

= (I −L)
[
(µR− λLR)(I −L)

]
(I −L)−1

= (I −L)
(
µR− λLR

)

=




−(λ+ µ) λ 0 0 · · · 0

µ −(λ+ µ) λ 0 · · · 0

0 µ −(λ+ µ) λ · · · 0

...
. . . . . . . . .

...

0 · · · 0 µ −(λ+ µ) λ 0

0 · · · 0 0 µ −(λ+ µ) 0

0 · · · 0 0 0 µ 0




=



Q 0

qTµ 0


 (2.2.75)

Consider the matrix Ã obtained from the similiarity transformation of the gener-

ator A of a reflecting queueing model Mλ/Mµ/1/k defined by
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Ã = (I −R)A(I −R)−1

=




0 λ 0 0 0 · · · 0

0 −(λ+ µ) λ 0 0 · · · 0

0 µ −(λ+ µ) λ 0 · · · 0

0 0 µ −(λ+ µ) λ · · · 0

0
...

. . . . . . . . .
...

0 0 · · · 0 µ −(λ+ µ) λ

0 0 · · · 0 0 µ −(λ+ µ)




Remark 2.2.3. Ã is not a yet a generator of a Markov chain because Ã does not

satisfy all the conditions of a Markov generator, all row entries does not sum to zero.

Let’s look at the transpose of Ã.

ÃT =




0 0T

qλ QT


 (2.2.76)

=




0 0 0 0 0 · · · 0

λ −(λ+ µ) µ 0 0 · · · 0

0 λ −(λ+ µ) µ 0 · · · 0

0 0 λ −(λ+ µ) µ · · · 0

...
...

. . . . . . . . .
...

0 0 · · · 0 λ −(λ+ µ) µ

0 0 · · · 0 0 λ −(λ+ µ)




(2.2.77)

72



Remark 2.2.4. ÃT is not a yet a generator of a Markov chain because ÃT does not

satisfy all the conditions of a Markov generator, all row entries does not sum to zero.

But now it is more straightforward to construct Markov generator from ÃT .

We will now construct a Markov generator from ÃT . To do this we need to first

augment µek to the right of ÃT , where

µek =




0

...

0

0

µ




. (2.2.78)

Additionally, to maintain a square matrix, we need to augment zero row to the bottom

of ÃT . Denote the resulting generator by Q̃ defined as

Q̃ =




0 0 0 0 0 · · · 0 0

λ −(λ+ µ) µ 0 0 · · · 0 0

0 λ −(λ+ µ) µ 0 · · · 0 0

0 0 λ −(λ+ µ) µ · · · 0 0

...
...

. . . . . . . . .
...

...

0 0 · · · 0 λ −(λ+ µ) µ 0

0 0 · · · 0 0 λ −(λ+ µ) µ

0 0 · · · 0 0 0 0 0




.

So Q̃ is a k+2 dimension square transition. We have constructed a transition rate

matrix for a Markov chain that is absorbing in states 0 and state k + 1. This gives

us a great connection between a reflecting queueing process at states {0, k} and an

absorbing queueing process at states {0, k + 1}, also known as two barrier absorbing
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process. Since we constructed Q̃ from ÃT by adding a column and a row where Ã is

defined by

Ã = (I −R)A(I −R)−1

Remark 2.2.5. We can get the transient probabilities of the non absorbing states

of the absorbing queueing process from the transition probabilities of the reflecting

queueing process with generator A by applying similarity transformation using the

right shift operator and matrix exponential for block diagonal matrix. Since Ã =

UAU−1 implies that the exponential has the form eÃ = UeAU−1.

Similarly, consider the matrix B̃ obtained from the similiarity transformation of

the generator A of a reflecting queueing model Mλ/Mµ/1/k defined by

B̃ = (I −L)A(I −L)−1

=




−(λ+ µ) λ 0 0 · · · 0

µ −(λ+ µ) λ 0 · · · 0

0 µ −(λ+ µ) λ · · · 0

...
. . . . . . . . .

...

0 · · · 0 µ −(λ+ µ) λ 0

0 · · · 0 0 µ −(λ+ µ) 0

0 · · · 0 0 0 µ 0




(2.2.79)

Remark 2.2.6. B̃ is not a yet a generator of a Markov chain because B̃ does not

satisfy all the conditions of a Markov generator, all row entries does not sum to zero.
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Let’s look at the transpose of B̃.

B̃T =



QT qµ

0T 0




=




−(λ+ µ) µ 0 0 · · · 0

λ −(λ+ µ) µ 0 · · · 0

0 λ −(λ+ µ) µ · · · 0

...
. . . . . . . . .

...

0 · · · 0 λ −(λ+ µ) µ 0

0 · · · 0 0 λ −(λ+ µ) µ

0 · · · 0 0 0 0 0




Remark 2.2.7. B̃T is not a yet a generator of a Markov chain because B̃T does not

satisfy all the conditions of a Markov generator, all row entries does not sum to zero.

But straightforward to construct Markov generator from B̃T .

We will now construct a Markov generator from B̃T . To do this we need to first

augment λe0 to the right of B̃T , where

λe0 =




λ

0

0

...

0




. (2.2.80)
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Additionally, to maintain a square matrix, we need to augment zero row to the top

of B̃T . Denote the resulting generator by Q̃B defined as

Q̃B =




0 0 0 0 0 · · · 0

λ −(λ+ µ) µ 0 0 · · · 0

0 λ −(λ+ µ) µ 0 · · · 0

0 0 λ −(λ+ µ) µ · · · 0

...
...

. . . . . . . . .
...

0 0 · · · 0 λ −(λ+ µ) µ 0

0 0 · · · 0 0 λ −(λ+ µ) µ

0 0 · · · 0 0 0 0 0




So Q̃B is a k + 2 dimension square transition. We have constructed a transition

rate matrix for a Markov chain that is absorbing in states −1 and state K. This gives

us a great connection between a reflecting queueing process at states {0, k} and an

absorbing queueing process at states {−1, k}, also known as two barrier absorbing

process. Since we constructed Q̃B from B̃T by adding a column and a row where B̃

is defined by

B̃ = (I −L)A(I −L)−1

Remark 2.2.8. We also get the transient probabilities of the non-absorbing states

of the absorbing queueing process from the transition probabilities of the reflecting

queueing process with generator A by applying similarity transformation using the left

shift operator and matrix exponential for block diagonal matrix. Since B̃ = VAV −1

implies that the exponential has the form eB̃ = V eAV −1.
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2.3 Allocation in a Bike-Sharing System

We now explore the optimal allocation problem for a station-based bike-sharing sys-

tem. The bike-sharing system consists of a map of stations and a station consists of

a set of docks. A user is then allowed to rent a bike from any station and return the

bike at any station in the system.

In managing a BSS, rebalancing operations account for more than 50 percent

of the operational costly; The term repositioning/rebalancing operation, the act of

replenishing a station with bikes when it becomes empty and the act of removing bikes

from a station when it is full, redistributes bicycles across the system to maintain a

reasonable distribution across all docking stations Fishman et al. (2014). Ideally, you

would like to rebalance as little as possible. In what follows, we develop a method

to enable the operator of BSS to optimally allocate bikes to each station during the

planning period of one day.

2.3.1 Mλ(t)/Mµ(t)/1/k Queueing Model for a Bike Station

We model a bike-sharing station as a double barrier reflecting Mλ(t)/Mµ(t)/1/k process

with non-constant rates. In the previous section, we discussed the time constant rate

analog of the double barrier reflecting process. In a bike-sharing station, there are

two sets of customers: one group of customers is interested in renting a bike and the

other group of customers is interested in returning a bike. Here we model both traffic

as a Poisson process (counting process) with non-constant µ(t) and λ(t) representing

the rate people are arriving to rent and return a bike respectively.

77



�(t)

µ(t)

. . .
�(t) �(t) �(t) �(t) �(t)

µ(t) µ(t) µ(t) µ(t) µ(t)
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Figure 2.18: A single station inventory process state dynamics. Customers retrieve

bicycles with rate µ(t) and return bicycles with rate λ(t).

Definition 2.3.1. A stochastic process {X(t) : t ≥ 0} with discrete state space S is

called a continous-time Markov chain (CTMC) if for all t ≥ 0, s ≥ 0, i ∈ S, i ∈ S

P
(
X(s+ t) = j

∣∣∣X(s) = i, {X(u) : 0 ≤ u < s}
)

= P
(
X(s+ t) = j

∣∣∣X(s) = i
)

= Pi,j(t) (2.3.1)

Lemma 2.3.1. The stochastic process {Q(t) : t ≥ 0} defined on the state space

{0, 1, . . . , k} representing the inventory at a single station at time t, under the

Mλ(t)/Mµ(t)/1/k queueing model, is a continous state Markov chain.

Proof. See Lajos (1962) for a proof.

2.3.2 The Transition Probabilities for Mλ(t)/Mµ(t)/1/k Queues

We first give an important lemma on the multiplicative property of stochastic matrices

popularly known as the ChapmanKolmogorov equation.

Lemma 2.3.2. The product of two row-stochastic square matrices is also a row-

stochastic matrix. Similarly, the product of two column-stochastic square matrices

is also a column-stochastic matrix. Moreover, the product of two doubly-stochastic

square matrices is also a doubly-stochastic matrix.
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Proof. Suppose matrices A ∈ Rk×k and B ∈ Rk×k are row stochastic. Then
k∑
j

Aij = 1

for each row i ∈ {1, 2, . . . , k} and
k∑
j

Bij = 1 for each row i ∈ {1, 2, . . . , k}. Now

consider the sum of the elements on each row i ∈ {1, 2, . . . , k} of the dot product of

the two matrices A and B. Denote the dot product by AB.

k∑

j=1

(AB)ij =
k∑

j=1

( k∑

`=1

Ai`B`j

)

=
k∑

`=1

(
Ai`

( k∑

j=1

B`j

))

=
k∑

`=1

Ai` · 1

= 1. (2.3.2)

In equation (2.3.2), we used the fact that we have finite summation to swap the

order of summation and Ai` does not depend j. The proof for column stochastic is

analogous. Suppose matrices A ∈ Rk×k and B ∈ Rk×k are column stochastic. Then
k∑
i

Aij = 1 for each row j ∈ {1, 2, . . . , k} and
k∑
i

Bij = 1 for each row j ∈ {1, 2, . . . , k}.

Now consider the sum of the elements on each column j ∈ {1, 2, . . . , k} of the dot

product of the two matrices A and B. Denote the dot product by AB.

k∑

i=1

(AB)ij =
k∑

i=1

( k∑

`=1

Ai`B`j

)

=
k∑

`=1

(
B`j

( k∑

i=1

Ai`

))

=
k∑

`=1

B`j · 1

= 1. (2.3.3)
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For the doubly stochastic matrices A ∈ Rk×k and B ∈ Rk×k, it remains to show

that 0 ≤ (AB)ij ≤ 1 ∀i, j ∈ {1, 2, . . . , k}.

0 ≤ (AB)ij

=
k∑

`=1

Ai`B`j

≤
k∑

`=1

Ai`

= 1. (2.3.4)

In equation (2.3.4), we used the fact that we have 0 ≤ B`j ≤ 1 ∀`, j ∈ {1, 2, . . . , k}

and 0 ≤ Ai`B`j ≤ Ai` ∀i, j, ` ∈ {1, 2, . . . , k}.

We now discuss three approximation methods to obtain the transition probabilities

for the Mλ(t)/Mµ(t)/1/k.

Numerical Approximation:

We first approximate the transient probabilities for the non-constant rate

Mλ(t)/Mµ(t)/1/k queueing model using numerical integration of the first-order Kol-

mogorov equations. The Kolmogorov forward equations for Mλ(t)/Mµ(t)/1/k queueing

model is given by:

d

dt
pm(t, 0) = µ(t) · pm(t, 1)− λ(t) · pm(t, 0) (2.3.5)

d

dt
pm(t, `) = µ(t) · pm(t, `+ 1) + λ(t) · pm(t, `− 1)−

(
λ(t) + µ(t)

)
· pm(t, `) (2.3.6)

∀` ∈ {1, . . . , k − 1}
d

dt
pm(t, k) = λ(t) · pm(t, k − 1)− µ(t) · pm(t, k). (2.3.7)

Since the above differential equations are linear, we use the forward Euler method,

which is a first-order numerical procedure for solving ordinary differential equa-
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tions (ODEs) with a given initial value, to find numerical approximations to the

solutions of the system of ODEs. Let f
(
pm(t), λ(t), µ(t)

)
, g
(
pm(t), λ(t), µ(t)

)
, and

h
(
pm(t), λ(t), µ(t)

)
represent the right hand sides of Equations 2.3.5, 2.3.6, and 2.3.7

respectively. Moreover let ∆t be the time step, then the Euler method gives the

following updates:

pm(t+ ∆t, 0)← pm(t, 0) + ∆t · f
(
pm(t), λ(t), µ(t)

)
(2.3.8)

pm(t+ ∆t, `)← pm(t, `) + ∆t · g
(
pk(t), λ(t), µ(t)

)
∀m ∈ {1, . . . , k − 1} (2.3.9)

pm(t+ ∆t, k)← pm(t, k) + ∆t · h
(
pm(t), λ(t), µ(t)

)
(2.3.10)

The error due to the forward Euler approximation is of order O(∆t) and becomes

smaller as the time step ∆t becomes finer. For our numerical experiments, we set

∆t = 10−3. Moreover, the solution of the forward equations in the non-stationary

case is the solution to a system of k+ 1 ordinary differential equations. The solution

can be written in matrix notation by defining

P (t) =




p0(t, 0) . . . p0(t,m) . . . p0(t, k)

... . . .
... . . .

...

pi(t, 0) . . . pi(t,m) . . . pi(t, k)

... . . .
... . . .

...

pk(t, 0) . . . pK(t,m) . . . pk(t, k)




∈ R(k+1)×(k+1) (2.3.11)

and

A(t) =




a00 . . . a0m . . . a0k

... . . .
... . . .

...

ai0 . . . aim . . . aik
... . . .

... . . .
...

ak0 . . . akm . . . akk




∈ R(k+1)×(k+1) (2.3.12)
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where aii = −(λ + µ), ai,i−1 = µ, ai,i+1 = λ for i = 1, 2, . . . , k − 1, with a00 = −λ,

a01 = λ and akk = −µ, ak,k−1 = µ and ai,` = 0 for
{
i, ` : |` − i| > 1

}
. Then ODEs

can be written in matrix notation

d

dt
P (t) = P (t)A(t) (2.3.13)

and the initial condition is P (0) = I. The notation in Equation 2.3.13 is often

referred to as the operator notation. Since the differential equation is linear, we can

write a solution to the differential equation in closed-form, when the operator does

not depend on time. The solution to the differential equation given in the Equation

2.3.13 can be written as

P (t) ≡ P (0)eAt (2.3.14)

where eAt is the exponential of a matrix defined as the element by element sum of

exponential series. A solution written in terms of trigonometric functions is also

available (Morse, 1958; Lajos, 1962).

Matrix approximation:

The second method is directly related to the previous numerical method. We

saw the closed-form solution P (t) = P (0)eAt, where A is the generator for the

Mλ(t)/Mµ(t)/1/k queueing model with constant the rates are constant (i.e when λ(t) =

λ and µ(t) = µ) for the planning horizon [0, T ]. We will use also use the results

from Lemma 2.3.2, which states that the dot product of two row-stochastic squared

matrices is also a row-stochastic matrix.

Now, to approximate the transition probabilities for the Mλ(t)/Mµ(t)/1/k queueing

model in the time interval [0, T ], we first partition the closed time interval [0, T ] into

sub-intervals. Consider the a finite sequence t0, t1, t2, . . . , tp−1, tp of real numbers such
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that 0 = t0 < t1, < t2, . . . , tp−1 < tp = T , we obtain a p partitions, of the closed time

interval [0, T ], denoted by P =
{

(t0, t1], (t1, t2], . . . , (tp−2, tp−1], (tp−1, tp]
}

.

t0 = 0 tp = T

t1 tj tp�1. . . . . .

z}|{

Subinterval of length
j

T
p

k

t0 tp

P (t0) = I P (t1) = P (t0)e
At1

(t1�t0)

tj�1

P (tj) = P (tj�1)e
Atj

(tj�tj�1)

Figure 2.19: Illustration of the partition of finite time interval [0, T ]

where each sub-interval (tj−1, tj] has length
⌊
T
p

⌋
for j ∈ {1, 2, . . . , p−1, p}. We assume

the arrival and servise rate are constant in each partition and set them to the average

rate in that interval. For each sub-interval (tj−1, tj] for j ∈ {1, 2, . . . , p − 1, p}, we

denote the rate matrix in the interval (tj−1, tj] by Atj . Then by the result of Lemma

2.3.2, we can recursively calculate the transition probabilities as follows:

P (t1) = P (t0)eAt1 (t1−t0)

P (t2) = P (t1)eAt2 (t2−t1)

...

P (tj) = P (tj−1)eAtj (tj−tj−1) for j ∈ {1, 2, . . . , p− 1, p}. (2.3.15)

Simulation Approximation:

The last method for estimating the transition probabilities for the time-varying

Mλ(t)/Mµ(t)/1/k queueing model we considered is the Monte Carlo simulation. This

approach is essentially using an empirical average estimator given in Equation 2.3.16

to approximate the transition probabilities.
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p̂m(t, n) =
1

N

N∑

i=1

{
Qi(t) = n

}
∀m,n ∈ {0, 1, . . . , k} (2.3.16)

were the initial queue length is Q(0) = m.

2.3.3 Performance Metrics for Mλ(t)/Mµ(t)/1/k Queueing

Model

Parameters Meaning

S The set of all station in the network

m The initial inventory level

m? The optimal initial inventory level after the rebalancing process

k The dock capacity of the station

πe The penalty charged for each customer lost due to a shortage of bicycles

πf The penalty charged for each customer lost due to a shortage of vacant docks

P The discretized set of the time interval [0, T ] into p partitions

J(x) The customer dissatisfaction for the station

Ĵ(m) The discretized customer dissatisfaction function for the station

pm(t, n) the transition probability of starting at state m and ending at state n

p̂m(t, n) the approximate transition probability of starting at state m and ending at state

Table 2.2: The notation table for the allocation problem

As a performance metric for the double barrier reflecting Mλ(t)/Mµ(t)/1/k queueing

model, we measure the expected total number of unserved/upset users in the rest of

the planning period. Two events mostly lead to upset customers in a bike-sharing sta-

tion. The first event occurs when a station is empty, preventing an arriving customer

who is seeking to rent a bike from receiving service. The second event occurs when a

station is full, preventing an arriving customer who is seeking to return a bike from
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receiving service. This performance metric is popularly known as the user dissatisfac-

tion penalty function; the user dissatisfaction was inspired and first made popular by

Raviv and Kolka (2013) and is becoming a unified metric in the literature Fishman

et al. (2014); Schuijbroek et al. (2017); Tang et al. (2019). The user dissatisfaction

function J(m), also known as the penalty function, is defined as follows:

J(m) =

∫ T

0

[
πe · P

(
Q(t) = 0|Q(0) = m

)
µ(t) + πf · P

(
Q(t) = k|Q(0) = m

)
λ(t)

]
dt.

=

∫ T

0

[
πe · pm(t, 0) · µ(t) + πf · pm(t, k) · λ(t)

]
dt. (2.3.17)

The user dissatisfaction definition has two terms in the integral. The first term in the

integral represents the cost incurred due to shortage of bicycles (cost incurred due to

abandonments of users hoping to rent a bicycle) and the second term in the integral

represents the cost incurred due to shortage of parking docks (cost incurred due to

abandonments of users hoping to return a bicycle). So the user dissatisfaction function

represents the expected total cost incurred for unserved users during the remainder

of the planning period [0, T ]. However when πe = πf = 1 then the user dissatisfaction

function represents the expected number of unserved users in the planning period

[0, T ]. To maintain a desired quality of service (QoS) at each self-serving bike station,

the service operator needs to reduce the user-dissatisfaction at each station. This

is equivalent to solving the following unconstrained optimization problem for each

station:

m∗ ∈ argmin
0≤m≤k

J(m) (2.3.18)
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The optimization problem in Equation 2.3.18 is fairly straight forward, except that

the the transition probabilities pm(t, 0) and pm(t, k) are not known and hence need

to be approximated. However, by discretizing the time interval [0, T ] we can ap-

proximate those transition probabilities and hence obtain an approximation of the

user-dissatisfaction function. We first partition the closed time interval [0, T ], on

the real-line, into a finite sequence t0, t1, t2, . . . , tp−1, tp of real numbers such that

0 = t0 < t1, < t2, . . . , tp−1 < tp = T . So we have p partitions of the form P =
{

(t0, t1], (t1, t2], . . . , (tp−2, tp−1], (tp−1, tp]
}

. Below, we give a straight forward Riemann

approximation of user-dissatisfaction function by a finite sum.

Ĵ(m) ,
p∑

i=1

(
πe · pm(ti, 0)µ(ti) + πf · pm(ti, k)λ(ti)

)
∆ti

≈ T

p

p∑

i=1

(
πe · p̂m(ti, 0)µ(ti) + πf · p̂m(ti, k)λ(ti)

)
(2.3.19)

were ∆ti = ti − ti−1 = T
p

is the length of sub-interval (ti−1, ti]. As ∆ti approaches

zero, we expect to get a better approximation. In subsection 2.3.2, we will discuss in

detail how to approximate the time-inhomogenous transition probability within each

subinterval of the partition, which is critical to perform the optimization discussed

in this section. This approximation of the user dissatisfaction function allows us to

easily and accurately minimize the user-dissatisfaction function. Hence, we have

m∗ ∈ argmin
0≤m≤k

J(m) ≈ argmin
0≤m≤k

Ĵ(m). (2.3.20)

Next, we discuss how we use the user dissatisfaction performance metric to guide data

generation and train a policy recommender.
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2.3.4 Allocation Policy Recommender via Machine Learning

In this section, we use machine learning to develop a policy for recommending the

number of bikes to allocate in a bike-sharing station during the planning period.

Figure 2.20, summarizes the architecture of the recommendation policy. The recom-

mendation policy takes as input the rental rate, the return rate, and the number of

docks (the parameter of the Mλ/Mµ/1/k queue) and outputs the optimal allocation

given by our objective function. And the notion of optimal is relative to the user

dissatisfaction function performance metric.

Policy = Classifier

⇥
�, µ, k

⇤
m⇣

Parameters of M�/Mµ/1/k
⌘ ⇣

Allocation
⌘

Training Data?

Figure 2.20: Illustration of the allocation recommender pipeline

Next, we discuss how to generate quality data for training the allocation recom-

mender policy.

λi The return rate of bikes for the ith sample

µi The renting rate of bikes for the ith sample

ki The dock capacity of bike station for the ith sample

N The total number of training sample

x(i) The list of queue parameters (feature list) for the ith sample

y(i) The allocation (label) corresponding to x(i)

Table 2.3: The notation table for data generation
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Algorithm 4: ML Data Generation

Input: Given the minimum and maximum arrival rate values λmin, λmax

respectively, the minimum and maximum service rate values µmin, µmax

respectively, the minimum and maximum capacity values kmin, kmax

respectively, and the number of sample N .

Output: Generated data S =
{(

x(i), y(i)
)}N

i=1
.

for i = 1, 2, . . . , N do

1 Sample:

λi ∼ U(λmin, λmax) continuous uniform ,

µi ∼ U(µmin, µmax) continuous uniform,

ki ∼ U(kmin, kmax) discrete uniform.

2 Set the feature list x(i) = [λi, µi, ki].

3 Set the label value y(i) = argmin
0≤m≤ki

Jλi,µi,ki(m).

end

4 S =
{(

x(i), y(i)
)}N

i=1

Algorithm 4 delineats the process of data generation. The algorithm outputs

a labeled data of the form S =
{(

x(i), y(i)
)}N

i=1
. Next, we discuss a subroutine for

training the policy recommender. This subroutine takes the training samples as input

and outputs a mapping, often called a hypothesis function, Hθ : X → Y such that

Hθ

(
x(i)
)
≈ y(i). For our computational work, we will use a neural network base

hypothesis function as the classifier, however, other reasonable hypothesis functions

for multiclass classification would suffice.
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Figure 2.21: Example of a simple feed-forward neural network architecture

Figure 2.21 shows an example a feedforward neural network architecture, where

the hidden nodes zi and the output nodes yi are defined as follows:

zi = W
(1)
0,i + λW

(1)
1,i + µW

(1)
2,i + kW

(1)
3,i

= W
(1)
0,i +

3∑

j=1

xjW
(1)
j,i

where

X =




x1

x2

x3




=




λ

µ

k




and the outputs

ŷi = g

(
W

(2)
0,i +

4∑

j=1

g(zj)W
(2)
j,i

)
(2.3.21)

where g(·) is the non-linear activation function, for example g(z) = tanh(z).
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2.4 Numerical and Computational Results

We present the computational and numerical results in this section.

2.4.1 Transition Probabilities Results

Figures 2.22 shows the plots of the transition probabilities, for the free process, as

a function of time using three methods: Integration, Bessel function, and Monte-

Carlo simulation. The integration and Bessel function methods give an exact form

for the transition probabilities and the simulation method gives an approximation of

the transient probabilities. As expected, the simulation results closely approximate

the exact results for the transition probabilities.
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(a) (b)

(c) (d)

Figure 2.22: The transition probabilities of the free process as a function of time

using three methods: Integration, Bessel function, and Monte-Carlo simulation. The

rates λ = µ = 1, time steps ∆t = 10−3, and sample size N = 103.

Figures 2.23 shows the plots of the transition probabilities, for the constant rate

Mλ/Mµ/1/k queue, as a function of time using three methods: Integration, Exponen-

tiation, and Monte-Carlo simulation. The integration and Exponentiation methods

give an exact form for the transition probabilities and the simulation method gives

an approximation of the transient probabilities. As expected, the simulation results

closely approximate the exact results for the transition probabilities.
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(a) (b)

(c) (d)

Figure 2.23: The transition probability estimation forMλ/Mµ/1/k queue as a function

of time. Using the numerical approximation technique, the matrix exponentiation

technique, and simulation technique. We use constant rates λ = 2, µ = 1, capacity

k = 6, time steps ∆t = 10−3, and sample size N = 103.

Figures 2.24 shows the plots of the transition probabilities, for the non-constant

rate Mλ(t)/Mµ(t)/1/k queue, as a function of time. We show the results for the expo-

nentiation estimation technique and the numerical approximation technique and the

simulation approximation technique. As expected the exponentiation approximation

technique seems to match the numerical approximation procedure for the transient

probabilities.
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(a) (b)

(c) (d)

Figure 2.24: The transition probability estimation for Mλ(t)/Mµ(t)/1/k queue as

a function of time. Using the numerical approximation technique, the matrix

exponentiation technique, and simulation technique. We use time varying rates

λ = 1 + 0.5 sin(t), µ = 2 + 0.5 sin(t), capacity k = 6, ∆t = 10−3, and N = 103

samples.

2.4.2 Allocation Insights via Case Studies

We first show the plots for the performance matric objective function J(m), in the

constant rate setting, highlighting cases when the pickup and the return rates are

either symmetric or non-symmetric in Figures 2.25, 2.26, and 2.27.

93



0 1 2 3 4 5 6

m

1

2

3

4

5

6

7

J(
m

)

1 hr.

30 min.

15 min.

1 min.

(a) k = 6

0 2 4 6 8 10

m

1

2

3

4

5

6

7

J(
m

)

1 hr.

30 min.

15 min.

1 min.

(b) k = 10

0 2 4 6 8 10 12 14

m

1

2

3

4

5

6

7

J(
m

)

1 hr.

30 min.

15 min.

1 min.

(c) k = 15

0 3 6 9 12 15 18 21

m

1

2

3

4

5

6

7

J(
m

)

1 hr.

30 min.

15 min.

1 min.

(d) k = 20

Figure 2.25: The plot of the objective function with constant pickup and return

rates. The pickup rate equals the return rate µ = λ = 1. Under four different

discretizations of time: ∆t = 1hour, ∆t = 30minutes, and ∆t = 1minute.
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Figure 2.26: The plot of the objective function with constant pickup and return

rates. The pickup rate is less than the return rate µ = 1 and λ = 1.1. Under four

different discretizations of time: ∆t = 1hour, ∆t = 30minutes, and ∆t = 1minute.
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Figure 2.27: The plot of the objective function with constant pickup and return

rates. The pickup rate is greater than the return rate µ = 1.2 and λ = 1. Under four

different discretizations of time: ∆t = 1hour, ∆t = 30minutes, and ∆t = 1minute.

Next, we show the plots for the performance matric objective function J(m), in

the non-constant rate setting, highlighting cases when the pickup and the return rates

are either symmetric or non-symmetric in Figure 2.28. The time step is set to one

hour increment. Moreover, the station capacity k = 20; the penalty charge for each

customer lost due to a shortage of bicycles and docks is the same πe = πf = 1.
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(a) Symmetric rates: λ(t) ≡ µ(t) = 1 + 0.5 sin(t)
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(b) Non-symmetric rates: λ(t) = 1.5 + 0.5 sin(t) andµ(t) = 1 + 0.5 sin(t)
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(c) Non-symmetric rates: λ(t) = 1 + 0.5 sin(t) andµ(t) = 1.6 + 0.5 sin(t)

Figure 2.28: The plot of different penalties incurred due to lost demands at a single

station. In (a), the optimal objective value is 0.760, which was achieved at Q∗0 = 10.

In (b), the optimal objective value is 1.983, which was achieved at Q∗0 = 3. In (c),

the optimal objective value is 2.612, which was achieved at Q∗0 = 18.
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ML Insights

In what follows, we generate 2 datasets using the Algorithm 4 with the following

parameters: λmin = 1, λmax = 10 respectively, the minimum and maximum service

rate values µmin = 1, µmax = 10 respectively, and the number of samples N = 105.

The above parameters are fixed for all the data sets. The variable parameters are the

minimum and maximum capacity values kmin = kmax = k, where k = 10 and k = 20.

(a) k = 10 (b) k = 20

Figure 2.29: The distribution of the target variable for the 2 datasets from constant

rate Mλ/Mµ/1/k queue. The variable m represents the class label.

Similarly, we also generated an example data for time-varying case where λ(t) =

λ + λ̄ sin(αt) and µ(t) = µ. We use a variant of Algorithm 4, where the ith feature

list is x(i) = [λi, λ̄i, αi, µi]. We sample α ∼ U(αmin, αmax), αmin = 1, αmax = 10,

ᾱ ∼ U(λmin, λ). And λmin = 1, λmax = 10 respectively, the minimum and maximum

service rate values µmin = 1, µmax = 10 respectively, and the number of samples

N = 105. Finally the minimum and maximum capacity values kmin = kmax = 10, and

the label y(i) is the same as previous defined in the algorithm.
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Figure 2.30: The distribution of the target variable for a dataset from non-constant

rate of Mλ(t)/Mµ(t)/1/k queue with the capacity k = 10. The variable m represents

the class label.

Figures 2.29 show the distribution of the target allocation variable m for the 2

datasets for constant rate Mλ/Mµ/1/k queue. The boundary points seem to be the

most frequent occurrence. To understand why we look closely at the values of the

traffic rates for those allocations as shown in Figure 2.31. It turns out that when

the renting rate and returning rate are significantly different, the user dissatisfaction

performance metric recommends allocating at one of the boundary points. In other

words, there is a clear separation of the data when λ and µ are far apart. Similarly,

Figure 2.30 shows the distribution of the target allocation variable m variable for

one example non-constant rate Mλ(t)/Mµ(t)/1/k queue. And Figure 2.32 shows the

distribution of features colored by the target allocation variable m.
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(a) k = 10 (b) k = 20

Figure 2.31: The distribution of features colored by the target allocation variable m

for the 2 datasets from constant rate of Mλ/Mµ/1/k queue.

Figure 2.32: The distribution of features (total rent and return rates) colored by the

target allocation variable m for the dataset from non-constant rate of Mλ(t)/Mµ(t)/1/k

queue with the capacity k = 10.

We apply a feed-forward neural network to learn a mapping between the queue

parameters (the rent and the return rates of bikes µ, λ, and the station dock capacity

k) and the optimal allocation for that queue. We use 90% of the data as the training

set and 10% of the data as the test set. Neural networks have two main hyperpa-

rameters that control the architecture of the network: the number of layers and the
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number of nodes in each hidden layer. The tables below summarize the performance

of the different specifications of the hyperparameter of the neural network.

1 Hid. Layer Train S. Test S.

2 nodes .198 .198

5 nodes .971 .973

10 nodes .982 .981

2 Hid. Layers Train S. Test S.

2 nodes .850 .849

5 nodes .974 .972

10 nodes .985 .983

Table 2.4: The performance of the neural network on the train and test dataset from

constant rate of Mλ/Mµ/1/k queue with k = 10. The score is calculated based on

the percentage of the correct prediction out of all predictions.

1 Hid. Layer Train S. Test S.

2 nodes .726 .725

5 nodes .828 .825

10 nodes .936 .934

2 Hid. Layers Train S. Test S.

2 nodes .688 .686

5 nodes .932 .933

10 nodes .962 .961

Table 2.5: The performance of the neural network on the train and test dataset from

constant rate of Mλ/Mµ/1/k queue with k = 20. The score is calculated based on

the percentage of the correct prediction out of all predictions.

1 Hid. Layer Train S. Test S.

2 nodes .701 .698

5 nodes .835 .829

10 nodes .887 .884

2 Hid. Layers Train S. Test S.

2 nodes .764 .761

5 nodes .890 .8858

10 nodes .928 .926

Table 2.6: The performance of the neural network on the train and test dataset from

non-constant rate of Mλ(t)/Mµ(t)/1/k queue with k = 10. The score is calculated

based on the percentage of the correct prediction out of all predictions.
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Tables 2.4,2.5, and 2.6 show the performance, the mean accuracy, of the neural

network models on different datasets. This metric of accuracy gives insight into the

hyperparameter tuning of the network architecture.

(a) k = 10 (b) k = 20

Figure 2.33: The difference between neural network prediction and the actual value

for the 2 datasets from constant rate of Mλ/Mµ/1/k queue. The neural network

architectures are the same with 2 hidden layers and 5 hidden units in each layer.
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(a) k = 10

Figure 2.34: The difference between neural network prediction and the actual value

for a dataset from non-constant rate of Mλ(t)/Mµ(t)/1/k queue. The neural network

architecture has 2 hidden layers and 5 hidden units in each layer.

Figure 2.33 and 2.34 show the distribution of the difference between the neural

network predictions and the actual values for 2 datasets with constant rates and
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a dataset with non-constant rates. As we can see, for the constant rate the abso-

lute value of the misclassification difference is mostly less than 1. The non-constant

example seems to have a high misclassification rate and the absolute value of the

misclassification difference is mostly less than 4. This is not so surprising, since the

non-constant rate example is expected to have more variability than the constate rate

case.

2.5 Conclusion and Future Work

We proposed a new stochastic analysis of queues and presents the complete transient

distribution analysis for the bike-sharing station queueing models. Our approach

bypassed the sample path argument, traditionally used to obtain the transient prob-

abilities of the model, and reduce this analysis to simply computing a real integral.

Based on our queueing analysis, we developed a new algorithm for the optimal allo-

cation of bikes in a bike-sharing system. Our algorithm takes in the rental rate, the

return rate, and the number of docks as its input and outputs the optimal allocation

given by our objective function. To demonstrate the practicality of our approach,

computational results using synthetic datasets were included.

Future Direction

The results of this work may lead to a different direction. In what follows, we sum-

marize some in terms of application and theory.

1. An immediate goal is to identify applications with suitable structures to which

our methodology applies. Our model and analysis are not just limited to bike-

sharing systems, it could be generally used to analyze other on-demand product

rental network. One example is the on-demand car-share service, where the

parking lot represents dock station and rental cars replace rental bicycles.
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2. As bike-sharing continues to be adapted by many cities in conjunction with

technological advancements, the future of bike-sharing programs are likely to be

moving towards dockless systems. Specifically, with the increased affordability

of the Global Positioning Systems (GPS) devices, it’s never been easier to track

on-demand inventories. Research shows that GPS may reduce the need for

physical docks Parkes et al. (2013). This will also serve other benefits to both

the user and the operator: For the user, it will provide real-time information

on bike availabilities which may save a user a trip; For the operator, GPS could

assist in redistributing bikes across the fleet. Our analysis of the self-serving

dock bike-sharing system remains useful even with the potential future adoption

of the dockless bike-sharing systems.

3. Some of the theoretical analysis of the model dynamics presented in this work

assumed the queueing system is markovian. Queueing system is markovian

when the inter-arrival and service distribution is assumed to be exponentially

distributed. Poisson arrival and service distribution were chosen for the model

analysis, because of it’s wide applicability and it’s inherent simplicity. Although

the Poisson assumption restricts the problem to the markovian case. Future

work would explore general arrival and service distribution and non-markovian

systems as an extension of this work. Moreover, future work will include ex-

ploring different representations of the user dissatisfaction function and consider

the dynamic bike repositioning problem which is more complex than the static

repositioning problem.
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Chapter 3

Supervised Learning-based

Decision Making

This chapter studies Supervised Learning (SL) method for learning a near-optimal

policy for sequential decision-making problems. Specifically, we used deep learn-

ing to learn the parameterized action space of a Multiplayer Online Mobile Arena

(MOBA) game using a relatively small dataset of expert human demonstrations.

Our approach uses a hybrid loss function defined as the weighted sum of regression

loss and classification loss. This loss is then used to train the multioutput policy

neural network. To demonstrate the effectiveness of our approach, we tested our

supervised learning method on the popular MOBA game King of Glory (a North

American version of the same game is titled Arena of Valor), where we build a

competitive AI agent for the 1v1 mode of the game. One main emphasis is on the

uniqueness of the application. Our SL-based implementation is one of the first

attempts to design an SL-based AI for the 1v1 version of this game.

The material in this chapter is joint work with Xiangru Lian, Carson Eisenach,

Daniel Jiang and Han Liu.
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3.1 Introduction

Artificial intelligence (AI) systems that could learn to perform a certain challenging

task from human demonstrations would revolutionize many industries. Significant

progress towards artificial intelligence has been made using supervised learning sys-

tems that are trained to replicate the decisions of human experts (He et al., 2015;

Krizhevsky et al.). Progress has also been made towards artificial intelligence, in

gameplay, using reinforcement learning systems that are trained to learn their own

experience over time (Mnih et al., 2015; Silver et al., 2016b). Both approaches typ-

ically require a huge amount of reliable data to achieve reasonable performance and

work well when the state space and action space are discrete. In this work, we con-

sider the problem of building a competitive AI agent to master the complex actions

of a Multiplayer Online Battle Arena(MOBA) game. Action space in MOBA games

usually contains both discrete and continuous components making it challenging to

use an off-the-shelf algorithm to successfully learn. Also, the presence of continu-

ous state space in the MOBA games further makes them challenging learning tasks.

Our work falls under the general framework of imitation learning. Imitation learning

techniques aim to mimic human behavior in a given task. An agent or a learning ma-

chine is trained to perform a task from demonstrations of good behavior by learning

a mapping between observations and actions Hussein et al. (2017). Imitation learning

is widely applicable in many domains and has been adapted for computer games ap-

plications (Thurau et al., 2004; Ross and Bagnell, 2010; Gorman, 2009). The primary

contributions of this paper are summarized below:

1. We demonstrate a supervised learning method of learning the parameterized

action space of a MOBA game using a relatively small dataset of expert hu-

man demonstrations. Our approach uses a hybrid loss function defined as the
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weighted sum of regression loss and classification loss. This loss is then used to

train the multioutput policy neural network.

2. The SL-based approach is tested on the popular MOBA game King of Glory

(a North American version of the same game is titled Arena of Valor), where

we build a competitive AI agent for the 1v1 mode of the game. Our SL-based

implementation is one of the first attempts to design an SL-based AI for the

1v1 version of this game.

3.1.1 Related Work

The idea of teaching, a learning agent, by imitation has been around for many years,

however, the field is gaining attention recently due to advances in computing and

rising interest in the intelligent applications in robotics and gameplay domains Hussein

et al. (2017). The process of learning by imitation is also gaining popularity because it

promotes teaching complex tasks, to a learning agent, with minimal expert knowledge

of the tasks.

Successfully learning policies for MOBA games is a challenging problem. Signifi-

cant progress has been made for games with small action spaces– such as Go and Atari

2600 games Silver et al. (2016b); Mnih et al. (2015), using a combination of imitation

and reinforcement learning. However, the action spaces in MOBA games typically

consist of both discrete and continuous components – specifically, the discrete actions

have continuous parameters. Hausknecht and Stone (2016) investigate the Deep re-

inforcement learning approach for the parametrized continuous action spaces in the

RoboCup Soccer gameplay domain. The reinforcement learning approach requires re-

ward functions that are designed specifically for each task. For instance, the number

of a possible sequence of action grows exponentially even simple tasks and defining

rewards for such problems is difficult.
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Ross et al. (2011) propose an iterative algorithm, which trains a stationary de-

terministic policy, that can be seen as a no-regret algorithm in an online learning

setting that learns the expert policy using traditional machine learning. This work is

similar to the DAgger Algorithm proposed by Ross et al. (2011); our work is different

in that we only use a dataset of expert human demonstrations without collecting and

aggregating additional data during training. Instead, we used a resampling technique

to obtain a better policy fit from the expert policy. The resampling technique clusters

observation in the training data based on the labels and weight state, action pairs

inversely to the size of the cluster to which the state belongs.

Imitation learning is a popular technique that aims to mimic expert behavior for

a given task Hussein et al. (2017). Imitation learning techniques have proven very

useful in practice and have led to a state-of-the-art performance in many application

domains (Ross et al., 2011; Schaal, 1999). A typical approach to imitation learning is

to train a classifier or a regressor to predict an experts behavior given training data of

the encountered observations and actions performed by the expert. In our work, we

combined both the classifier and regressor due to the nature of the input; needing to

predict both continuous and discrete values. This is done by training a multi-output

neural network architecture that combines related regression and classification tasks

that rely on the same input data. Our work demonstrates a supervised learning

approach for learning policies for MOBA games with Parametrized Action Spaces

from relatively small numbers of human demonstrations.

3.2 Methodology

In this section, we define our custom loss function for learning the parameterized

action space of a MOBA game using a relatively small dataset of expert human
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demonstrations. Moreover, we also discuss the optimization process for this loss

function using a variant of stochastic gradient descent (SGD).

3.2.1 Hybrid Loss Function

We now define the hybrid loss function L(y, ŷ) as follows:

L(y, ŷ) = γ1

[ ||yc||2||ŷc||2 − y>c ŷc
||yc||2 · ||ŷc||2

]
− γ2

∑

i

y
(i)
d log

(
ŷ

(i)
d

)

= γ1


1−

∑
i y

(i)
c · ŷ(i)

c√
∑

i

(
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(i)
c

)2

·
√
∑

i

(
ŷ

(i)
c
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− γ2

∑

i

y
(i)
d log

(
ŷ

(i)
d

)
, (3.2.1)

where

y =



yd

yc


 ∈ Rn and ŷ =



ŷd

ŷc


 ∈ Rn.

So for the continuous component, we used cosine proximity loss to compute the

cosine proximity between predicted value and actual value. While for the discrete

component, we used negative logarithmic Likelihood loss to measures the accuracy of

the classifier, since our model outputs a probability for each discrete class. Equation

3.2.1 is essentially the weighted sum of the regression loss and classification loss

for some predefined weights γ1 and γ2. This overall loss function allows for easy

computation of gradients. Loss function is an important part of neural networks; It

is used to measure the inconsistency between predicted value ŷ and actual label y.

Given the training sample set
{

(x(i), y(i))
}m
i=1
∼ D then the risk of the network is
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given by:

LD(W ) = E(x,y)∼D

[
L
(
hW (x),y

)]

≈ 1

n

n∑

i=1

L
(
hW

(
x(i)
)
, y(i)

)

= L̂D(W ). (3.2.2)

The cost function of our model consists of two terms: the empirical risk term and the

regularization term.

J(W ) = L̂D(W ) + λΦ(W ), (3.2.3)

where Φ(·) = λ||·||2
2

is the regularization term and L̂D(W ) represent the empirical risk

function. The goal is to find W ? that minimizes this cost function,

W ? = argmin
W∈Π

J(W )

= argmin
W∈Π

[
L̂D(W ) + λΦ(W )

]

= argmin
W∈Π

[
1

n

n∑

i=1

L
(
y(i), ŷ(i)

)
+ λΦ(W )

]

= argmin
W∈Π

[
1

n

n∑

i=1

L
(
y(i), hW

(
x(i)
) )

+ λΦ(W )

]
. (3.2.4)

This cost function is highly non-convex because the hypothesis function is nonlin-

ear. Nevertheless, we can still implement the SGD algorithm and hope it will find

a reasonable near-optimal solution Shalev-Shwartz and Ben-David (2014). Next, we

briefly discuss how we optimize the loss function using a variant of SGD.
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3.2.2 Training the Neural Network

Loss Optimization: We want to find the network weights that achieve the lowest

loss. Denote the loss of our network by:

L
(
h(x(i);W ), y(i)

)
where W =

{
W (0),W (1),W (2), . . .

}
. (3.2.5)

The loss measures the cost incurred from incorrect predictions. The empirical

Loss, shown in Equation 3.2.6, measures the total loss over our entire training dataset.

J(W ) =
1

m

m∑

i=1

L
(
h
(
x(i);W

)
, y(i)

)
. (3.2.6)

Usually, we want to find the network weights that achieve the lowest loss as shown

bellow in Equation 3.2.7.

W ? ∈ argmin
W

J(W )

= argmin
W

1

m

m∑

i=1

L
(
h
(
x(i);W

)
, y(i)

)
. (3.2.7)

The optimization through gradient descent updates as follows:

W ←W − η∂J(W )

∂W
. (3.2.8)

In practice computing the gradient for all points ∂J(W )
∂W

on every iteration is very

expensive. On the other extreme, we could compute the gradient for a single point

∂Jk(W )
∂W

, on every iteration but it will be very noisy. So in practice, we pick a middle

ground and use a mini-batches B and compute the gradient for that batch as follows:

∂J(W )

∂W
=

1

B

B∑

k=1

∂Jk(W )

∂W
(3.2.9)
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This gives us a much more accurate estimation of the gradient than the vanilla stochas-

tic gradient descent. This approach also allows us to parallelize the training process.

3.3 Experiments and Results

3.3.1 Case Study: King of Glory MOBA SL-Based Agent

We implemented the SL-Based Agent within a new and challenging environment, the

recently popular MOBA game King of Glory by Tencent (the game is also known

as Honor of Kings and a North American release of the game is titled Arena of

Valor). Each character (or “hero”) in King of Glory contains a tailor-designed AI

agent, which we will refer to as the internal AI. Our implementation of the algorithm

is one of the first attempts to design an AI agent for the one-versus-one version of

this game. The initial goal here is to produce an agent that outperforms the internal

rule-based AIs. Subsequently, in the next chapter, The developed SL-Based Agent

will be tested against other competitive state-of-the-art agents. The SL-Based Agent

is constructed via supervised learning on a small dataset of approximately 100,000

state/action pairs of expert human gameplay data.

Game Description. In the King of Glory, players are divided into two opposing

teams and each team has a base located on the opposite corners of the game map

(similar to other MOBA games, like League of Legends or Dota 2 ). The bases are

guarded by towers, which can attack the enemies when they are within a certain

attack range. The goal of each team is to overcome the towers and eventually destroy

the opposing team’s “crystal,” located at the enemy base. In the standard version

of the game, each team consists of five players (5v5), but smaller versions, 3v3 and

1v1, are also available. For this paper, we only consider 1v1 mode, where each player

controls a primary “hero” alongside less powerful game-controlled characters called

“minions.” These units guard the path to the crystal and will automatically fire
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(weak) attacks at enemies within range. Figure 3.1 shows the annotated version of

the game map with the two heroes and their minions; the upper-left corner shows the

map, with the blue and red markers pinpointing the towers and crystals.

Figure 3.1: Annotated battle field for Moba 1v1 game

Resampling Weights. During training of the policy network, we first cluster all

the observations in the training dataset based on the action types. And weight state,

action pairs inversely to the size of the cluster to which the state belongs. This is

helpful to help resolve the inherent class imbalance in the training dataset. In MOBA

games, some state, action pair occur frequently. For example, a common action is

forward movement and attack; whereas actions that involve using special skills or

replenishing health are less common. As a result, sampling the dataset uniformly

leads to model underfitting of the data and hence yield poor performance.
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Features of the State Space and the Action Space

State Space. In our experiment, the state of the game is represented by a 41-

dimensional feature vector, which was constructed using the output from the game

engine and API, as shown in Table 3.1. The features consist of basic attributes of

the two heroes, the computer-controlled units and the game structures. The feature

list also has information on the relative positions of the opposing team’s units and

structures with respect to the hero controlled by our algorithm.

Table 3.1: The state space features for the supervised learning agent

No. Feature Dim.

1 Location of Hero 1 2

2 Location of Hero 2 2

3 HP of Hero 1 1

4 HP of Hero 2 1

5 Hero 1 skill cooldowns 5

6 Hero 2 skill cooldowns 5

7 Direction to enemy hero 3

8 Direction to enemy tower 4

9 Direction to enemy minion 3

10 Enemy tower HP 1

11 Enemy minion HP 1

12 Direction to the spring 3

13 Total HP of allied minions 1

14 Enemy’s tower attacking Hero 1 3

15 Hero 1 in range of enemy towers 3

16 Hero 2 in range of enemy towers 3

115



Action Space. The action space consists of three kinds of actions: “normal” actions

(moving and attacking), “learn” actions (learning new skills), “purchase” actions

(purchasing new equipments). Let A = Aact ∪Abuy ∪Alearn denote the action space.

The action space A of KOG consists of both discrete and continuous actions. Specifi-

cally, an action a ∈ A can be written as a = (k, xk), where k ∈ {1, 2, . . . , K} (discrete

action types) and xk ∈ Xk (continuous parameter space). Formally the parametrized

action space is given below:

A =
{

(k, xk)
∣∣∣xk ∈ Xk, ∀k ∈ {1, 2, . . . , K}

}
(3.3.1)

Practically, an action a = (k, xk) ∈ A is chosen in two steps: first choose k from the

discrete action set {1, 2, . . . , K}. Then choose xk from the continuous action space Xk.

For simplicity, we assume the action space is the same for all non-terminal states. In

our experiments, we set K = 7 for the discrete action types summarized in Table 3.2.

We also restrict the continuous action space to Xk = R2. Moreover, the continuous

parameters are discretized to avoid exhaustive search. Finally, we note that some of

the continuous parameter could be deficient.

Table 3.2: The discrete action types

k ActionType Meaning

1 NormalAttack Attack the current target

2 MoveDir(x2) Move in the direction x2

3 Skill1(x3) Use Skill 1 at target position x3

4 Skill2(x4) Use Skill 2 at target position x4

5 Skill3(x5) Use Skill 3 at target position x5

6 Recover Replenish health at the base

7 NoAction Perform no action
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Implementation details and setup

Experimental Setup. We now give a summary of our experimental setup and

describe our practical implementation of the algorithm. Our agent plays the hero

DiRenJie, a marksman type hero (i.e., he shoots a projectile), out of approximately

75 available as the opponent. When testing against other internal AIs, we choose

heroes other than DiRenJie that we did not use for training.

1. The “SL” agent denoting supervised agent was trained with resampled weights.

This agent was trained on the a dataset of 100,000 state-action pairs from human

experts games

2. The second agent is labeled “NRW” for no resampled weight, which uses the

same parameters as the SL agent except that it doesn’t use resampled weights.

This agent was trained on the same dataset of 100,000 state-action pairs from

human expert games.

In fact, the policy function is consistent across all agents. The policy function

approximation uses fully-connected neural networks with five and two hidden layers

and SELU (scaled exponential linear unit) activation (Klambauer et al., 2017). The

learning rate r = 0.003 was chosen carefully due to non-convexity and was tuned via

trial and error. A major challenge in implementing SL agent for King of Glory game

is that the action space is parametrized by both continuous and discrete parameters.

We employed a hybrid loss function defined as a linear combination of cosine proximity

loss and the negative log-likelihood loss. For the continuous component of the action

space, we used cosine proximity between predicted value and actual value. While

for the discrete component of the action space, we used the negative logarithmic

likelihood loss to measure the accuracy of the classifier.

Expert Data: Given approximately 200 games of expert human games, we first

extract relevant important features for the hero DiRenJie, a marksman type hero.
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Let S =
{

(x(i), y(i))
}m
i=1

denote the extracted data, where m ≈ 100, 000. From each

frame, we extract the state feature vector described in Table 3.1, and the correspond-

ing action(s) taken by the expert player. For better performance, we normalized and

scaled the features to have the same scale across all features. In practice, feed-forward

neural networks work best if the inputs are centered. We train a supervised learn-

ing (SL) policy network pW directly from S =
{

(x(i), y(i))
}m
i=1

, where W denotes

the vector of policy parameters. Here a policy is represented by a neural network

whose input is a representation of the state, whose output is action selection proba-

bilities over all legal actions, and whose weights are the policy parameters. The policy

network is trained on randomly sampled state-action pairs using stochastic gradient

descent (SGD) to maximize the likelihood of selecting a particular action in a par-

ticular state. For better performance, we initialize the initial policy to a randomly

chosen vector whose entries are very close to zero. This works well and can potentially

lead to a good local minimum as each run of SGD has a unique initialization. This

initialization approach ensures that the weights of the hidden layers are not similar.

Results and Discussion

Results against Internal AI. To test our agent against internal hand-crafted AIs,

we ask the question: “how much faster can we beat an opponent compared to the

internal AI that controls our hero?” We first played the internal DiRenJie AI against

other internal AIs and selected six heroes of the marksman type that internal DiRenJie

is able to defeat (unlike in 5v5, where each hero plays a specific role on the team, the

1v1 game should be played with heroes that are of a similar type to avoid mismatches).

As shown in Figure 3.2, our SL agents are able to win the game significantly faster

than the hand-crafted AIs. In order to collect additional data beyond a single game

(as the game is nearly deterministic), we subsample 80% of the dataset and trained 14

additional SL agents, for a total of 15 comparisons. Similarly, we subsample 80% of
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the dataset and trained 14 additional NRW agents, for a total of 15 comparisons. This

variation is captured by the error bars in both the SL and NRW agents as depicted

in Figure 3.2.
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Figure 3.2: Number of Frames to Defeat Marksman Heroes

Results for SL versus NRW. The SL agent Defeats the NRW trained on the

same dataset of 100,000 state-action pairs from human expert games. We give an

aggregate view of these games by computing the ratio of SL agents’ experience points

to the NRW agents’ experience and the ratio of our gold to the NRW agents’ gold

(both experience and gold are collected throughout as a hero deals damage and defeats

enemies and are positively correlated with victories). Since the lengths of the 15 games

vary, we compare the ratios to the fraction of the game completed; It is interesting to

note that the SL agent tends to end the game with approximately 1.5x the amount

of experience and gold as the NRW agents. The initial aggressiveness of the agent

(first 20% of the game) may partly explain its success against the NWR agents.
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Figure 3.3: Plot of In-game behavior between SL Agent versus NRW Agents. In (a),

we show the In-game experience. In (b), we plot the In-game gold (reward) collected.

Figure 3.4, shows both the training and validation loss curves. The loss curve is

often useful when debugging a neural network during training. It gives us a snapshot

of the training process and the direction in which the network learns. We can see

that the training loss seems to be slowing decreasing over time given the low learning

rate (r = 0.003). The validation loss seems to be decreasing until 50 epochs and
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increasing thereafter. This tells us to stop training around 50 epochs to avoid over-

fitting. Similarly, Figure 3.5, presents both training and validation accuracy curves.

The accuracy curve is useful to understand the progress of neural networks. We can

see both accuracy curves are increasing until around 50 epochs.
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Figure 3.4: The Training and Validation Loss
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Figure 3.5: The Training and Validation Accuracy
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3.4 Conclusion and Future Work

We have demonstrated a supervised learning method of learning the parameterized

action space of a MOBA game using a relatively small dataset of expert human

demonstrations. Our approach used a hybrid loss function defined as the weighted

sum of regression loss and classification loss. Which was then used to train the

multioutput policy neural network. Moreover, the SL-based approach is tested on the

popular MOBA game King of Glory (a North American version of the same game

is titled Arena of Valor), where we build a competitive AI agent for the 1v1 mode

of the game. Our SL-based implementation is one of the first attempts to design an

SL-based AI for the 1v1 version of this game. In the next chapter, we further compare

the developed SL-Based Agent against other competitive state-of-the-art agents.

Future Direction

The results of this work may lead to a different direction. In what follows, we sum-

marize some in terms of application and theory. Our primary methodological avenue

for future work, in the supervised learning setting, is to incorporate an unsupervised

policy improvement. Although the supervised approach works well, it is limited to

the quality of the available dataset. Future direction involves a two-step policy learn-

ing: the first step remains the same as the proposed supervised approach. While the

second step takes the first step as initialization and further improves the policy with

reinforcement learning.

We outlined the improvement step to the supervised approach. Currently, we have

supervised policy πSL which was built by analyzing the frequency of moves from a

set of human gameplay data D. We would like to use reinforcement learning (RL)

to further improve the policy πSL. The hope is that the resultant policy πRL would

outperform the old one. In other words, we use RL to improve the policy πRL until
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the resulting policy is significantly better than the supervised policy πSL. The two

steps are summarized as follows:

Step 1 (Supervised). Let S =
{

(x(i), y(i))
}n
i=1
∼ D be a sample training data from

the expert gameplay data. We would solve

W ? = argmin
W∈Π

J(W )

= argmin
W∈Π

[
L̂D(W ) + λΦ(W )

]

= argmin
W∈Π

[
1

n

n∑

i=1

L(y(i), ŷ(i)) + λΦ(W )

]

= argmin
W∈Π

[
1

n

n∑

i=1

L(y(i), hW (x(i))) + λΦ(W )

]
(3.4.1)

using the supervised learning approach outlined in the previous section to get πSL ≡

πW ? .

Step 2 (Reinforcement). We use direct policy search to further tune W such that

the policy πW produces the greatest reward. Here we initialize reinforcement learning

algorithm by the policy produced in Step 1. The next chapter discusses how to design

such a reinforcement learning algorithm.
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Chapter 4

Reinforcement Learning-based

Decision Making

This chapter studies approximation methods for solving sequential decision prob-

lems. Inspired by recent successes of the forward-planning technique, Monte-Carlo

tree search (MCTS), in several artificial intelligence (AI) application domains, we

propose a model-based reinforcement learning (RL) technique that iteratively

applies MCTS on batches of small, finite-horizon versions of the original infinite-

horizon Markov decision process. The terminal condition of the finite-horizon

problems, or the leaf-node evaluator of the decision tree generated by MCTS, is

specified using a combination of an estimated value function and an estimated

policy function. The recommendations generated by the MCTS procedure are

then provided as feedback to refine, through classification and regression, the

leaf-node evaluator for the next iteration. We provide the first sample complex-

ity bounds for a tree search-based RL algorithm. Furthermore, we show that a

deep neural network implementation of the technique can create a competitive

AI agent for the popular multi-player online battle arena (MOBA) game King of

Glory.
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The material in this chapter is joint work with Daniel Jiang and Han Liu. The

work has been submitted to 2018 ICML conference Jiang et al. (2018).

4.1 Introduction

Monte Carlo Tree Search (MCTS) is a heuristic search algorithm for decision pro-

cesses. MCTS, introduced in Coulom (2006) and surveyed in detail by Browne et al.

(2012b), has received attention in recent years for its successes in gameplay artificial

intelligence (AI), culminating in the Go-playing AI AlphaGo (Silver et al., 2016a).

MCTS seeks to iteratively build the decision tree associated with a given Markov

decision process (MDP) so that attention is focused on “important” areas of the

state space, assuming a given initial state (or root node of the decision tree). The

intuition behind MCTS is that if rough estimates of state or action values are given,

then it is only necessary to expand the decision tree in the direction of states and

actions with high estimated value. To accomplish this, MCTS utilizes the guidance

of leaf-node evaluators (either a policy function Chaslot et al. (2006) rollout, a value

function evaluation (Campbell et al., 2002; Enzenberger, 2004), or a mixture of both

(Silver et al., 2016a)) to produce estimates of downstream values once the tree has

reached a certain depth (Browne et al., 2012b). The information from the leaf-nodes

are then backpropagated up the tree. The performance of MCTS depends heavily on

the quality of the policy/value approximations (Gelly and Silver, 2007), and at the

same time, the successes of MCTS in Go show that MCTS improves upon a given

policy when the policy is used for leaf evaluation, and in fact, it can be viewed as

a policy improvement operator (Silver et al., 2017). In this paper, we study a new

feedback-based framework, wherein MCTS updates its own leaf-node evaluators using

observations generated at the root node.

125



MCTS is typically viewed as an online planner, where a decision tree is built

starting from the current state as the root node (Chaslot et al., 2006; 2008; Hingston

and Masek, 2007; Mâıtrepierre et al., 2008; Cazenave, 2009; Méhat and Cazenave,

2010; Gelly and Silver, 2011; Gelly et al., 2012; Silver et al., 2016a). The standard

goal of MCTS is to recommend an action for the root node only. After the action

is taken, the system moves forward and a new tree is created from the next state

(statistics from the old tree may be partially saved or completely discarded). MCTS

is thus a “local” procedure (in that it only returns an action for a given state) and is

inherently different from value function approximation or policy function approxima-

tion approaches where a “global” policy (one that contains policy information about

all states) is built. One concern with MCTS methods is that they are generally not

well-suited to real-time decision-making applications: because MCTS builds “on-the-

fly” local approximations, it is slower than playing a game using a policy which has

been pre-trained. For games like Chess or Go, online planning using MCTS may be

appropriate, but in games where fast decisions are necessary (e.g., Atari or MOBA

games), tree search methods are too slow (Guo et al., 2014). The proposed algorithm

is intended to be used in an off-policy fashion during the reinforcement learning (RL)

training phase. Once the training is complete, the policies associated with leaf-node

evaluation can be implemented to make fast, real-time decisions without any further

need for tree search.

Main Contributions. These characteristics of MCTS motivate our proposed

method, which attempts to leverage the local properties of MCTS into a training

procedure to iteratively build global policy across all states. The idea is to apply

MCTS on batches of small, finite-horizon versions of the original infinite-horizon

Markov decision process (MDP). A rough summary is as follows: (1) initialize an

arbitrary value function and a policy function; (2) start (possibly in parallel) a batch

of MCTS instances, limited in search-depth, initialized from a set of sampled states,
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while incorporating a combination of the value and policy function as leaf-node

evaluators; (3) update both the value and policy functions using the latest MCTS

root node observations; (4) Repeat starting from step (2). This method exploits the

idea that an MCTS policy is better than either of the leaf-node evaluator policies

alone (Silver et al., 2016a), yet improved leaf-node evaluators also improve the

quality of MCTS (Gelly and Silver, 2007). The primary contributions of this paper

are summarized below.

1. We propose a batch, MCTS-based RL method that operates on continuous state,

finite action MDPs and exploits the idea that leaf-evaluators can be updated to

produce a stronger tree search using previous tree search results. Function ap-

proximators are used to track policy and value function approximations, where

the latter is used to reduce the length of the tree search rollout (oftentimes, the

rollout of the policy becomes a computational bottle-neck in complex environ-

ments).

2. We provide a full sample complexity analysis of the method and show that

with large enough sample sizes and sufficiently large tree search effort, the

performance of the estimated policies can be made close to optimal, up to

some unavoidable approximation error. To our knowledge, batch MCTS-based

RL methods have not been theoretically analyzed.

3. The feedback-based tree search algorithm is tested on the popular MOBA

game King of Glory (a North American version of the same game is titled

Arena of Valor), where we build a competitive AI agent for the 1v1 mode of

the game.

127



4.1.1 Related Work

The question of whether tree search could be leveraged during training for situations

when it is too slow for online planning was first explored by Guo et al. (2014) in the

context of Atari games, where MCTS was used to generate offline training data for

a supervised learning (classification) procedure. The authors showed that by using

the power of tree search offline, the resulting policy was able to outperform the deep

Q-network approach of Mnih et al. (2013).

A natural next step is to repeatedly apply the procedure of Guo et al. (2014). In

building AlphaGo Zero, Silver et al. (2017) extends the ideas of Guo et al. (2014)

into an iterative procedure, where the neural network policy is updated after every

episode and then reincorporated into tree search. The technique was able to produce

a superhuman Go-playing AI (and improves upon the previous AlphaGo versions)

without any human replay data. Our proposed algorithm is a provably near-optimal

variant (and in some respects, generalization) of the AlphaGo Zero algorithm. The

key differences are: (1) our theoretical results cover a continuous, rather than finite,

state space setting, (2) the environment is a stochastic MDP rather than a sequential

deterministic two player game, (3) we use batch updates, (4) the feedback of previous

results to the leaf-evaluator manifests as both policy and value updates rather than

just the value (as Silver et al. (2017) does not use policy rollouts).

Anthony et al. (2017) proposes a general framework called expert iteration that

combines supervised learning with tree search-based planning. The methods described

in (Guo et al., 2014; Silver et al., 2017), and the current paper can all be (at least

loosely) expressed under the expert iteration framework. However, no theoretical in-

sights were given in these previous works and our paper intends to fill this gap by

providing a full theoretical analysis of an iterative, MCTS-based RL algorithm. Our

analysis relies on the concentrability coefficient idea of Munos (2007) for approxi-

mate value iteration and builds upon the work on classification based policy iteration
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(Lazaric et al., 2016), approximate modified policy iteration (Scherrer et al., 2015),

and fitted value iteration (Munos and Szepesvári, 2008).

Sample complexity results for MCTS are relatively sparse. Teraoka et al. (2014)

gives a high probability upper bound on the number of playouts needed to achieve

ε-accuracy at the root node for a stylized version of MCTS called FindTopWinner.

More recently, Kaufmann and Koolen (2017) provided high probability bounds on the

sample complexity of two other variants of MCTS called UGapE-MCTS and LUCB-MCTS.

In this paper, we do not require any particular implementation of MCTS, but make

a generic assumption on its accuracy that is inspired by these results.

4.2 Methodology

4.2.1 Problem Formulation

Consider a discounted, infinite-horizon MDP with a continuous state space S and

finite action space A. For all (s, a) ∈ S × A, the reward function r : S × A → R

satisfies r(s, a) ∈ [0, Rmax].

The transition kernel, which describes transitions to the next state given current

state s and action a, is written p( ·|s, a) — a probability measure over S. Given a

discount factor γ ∈ [0, 1), the value function V π of a policy π : S → A starting in

s = s0 ∈ S is

V π(s) = E

[
∞∑

t=0

γt r(st, πt(st))

]
, (4.2.1)

where st is the state visited at time t. The optimal value function is obtained by max-

imizing over all policies: V ∗(s) = supπ∈Π V
π(s), where Π is the set of all deterministic

policies (i.e., mappings from state to action).

Both V π and V ∗ are bounded by Vmax = Rmax/(1 − γ). We let F be the set of

bounded, real-valued functions mapping S to [0, Vmax]. We frequently make use of
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the shorthand operator Tπ : F → F , where the quantity (TπV )(s) is be interpreted as

the reward gained by taking an action according to π, receiving the reward r(s, π(s)),

and then receiving an expected terminal reward according to the argument V :

(TπV )(s) = r(s, π(s)) + γ

∫

S
V (s̃) p(ds̃|s, π(s)).

It is well-known that V π is the unique fixed-point of Tπ, meaning TπV
π = V π (Put-

erman, 2014). We will occasionally write Ta = Tπa where πa maps all states to the

action a ∈ A. The Bellman operator T : F → F is similarly defined using the

maximizing action:

(TV )(s) = max
a∈A

[
r(s, a) + γ

∫

S
V (s̃) p(ds̃|s, a)

]
.

It is also known that V ∗ is the unique fixed-point of T (Puterman, 2014) and that

acting greedy with respect to the optimal value function V ∗ produces an optimal

policy

π∗(s) ∈ argmax
a∈A

[
r(s, a) + γ

∫

S
V ∗(s̃) p(ds̃|s, a)

]
.

Lastly, let V ∈ F and let ν be a distribution over S. We define left and right versions

of an operator Pπ:

(PπV )(s) =

∫

S
V (s̃) p(ds̃|s, π(s)),

(νPπ)(ds̃) =

∫

S
p(ds̃|s, π(s)) ν(ds).

Note that PπV ∈ F and µPπ is another distribution over S.
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4.2.2 Feedback-Based Tree Search Algorithm

We now formally describe the proposed Algorithm 5. The parameters are as follows.

Let Π̄ ⊆ Π be a space of approximate policies and F̄ ⊆ F be a space of approximate

value functions (e.g., classes of neural network architectures). We let πk ∈ Π̄ be the

policy function approximation (PFA) and Vk ∈ F̄ be the value function approximation

(VFA) at iteration k of the algorithm. Parameters subscripted with ‘0’ are used in

the value function approximation (regression) phase and parameters subscripted with

‘1’ are used in the tree search phase. The full description of the procedure is given in

Algorithm 5, but we first summarize the two phases, VFA (Steps 2 and 3) and MCTS

(Steps 4, 5, and 6).

VFA Phase. Given a policy πk, we wish to approximate its value by fitting a function

using subroutine Regress on N0 states sampled from a distribution ρ0. The idea here

is that because full rollouts during tree search are expensive, we can perform regression

first on a smaller set of rollouts and use the resulting VFA on the next batch of tree

search runs to reduce computation. For each sampled state s, we estimate its value

using M0 full rollouts, which can be obtained using the absorption time formulation

of an infinite horizon MDP (Puterman, 2014, Proposition 5.3.1).

MCTS Phase. On iteration k, we first sample a set of N1 i.i.d. states from a

distribution ρ1 over S. From each state, a tree search algorithm, denoted MCTS, is

executed for M1 iterations on a search tree of maximum depth d. We assume here

that the leaf evaluator is a general function of the PFA and VFA from the previous

iteration, πk and Vk, and it is denoted as a “subroutine” LeafEval. The results of

the MCTS procedure are piped into a subroutine Classify, which fits a new policy

πk+1 using classification (from continuous states to discrete actions) on the new data.

As discussed more in Assumption 4.2.4, Classify uses L1 observations (one-step

rollouts) to compute a loss function.
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Algorithm 5: Feedback-Based Tree Search

Input: Initial estimates V 0 and π0.

Subalgorithm: Regress, MCTS, LeafEval and Classify

Output: Value and policy approximations {V k} and {πk}.

for k = 1, 2, . . . do

1 Sample a set of N0 i.i.d. states S0,k from ρ0 and N1 i.i.d. states S1,k

from ρ1.

2 Compute a sample average Ŷk(s) of M0 independent rollouts of πk

for each s ∈ S0,k. See Assumption 4.2.1.

3 Use Regress on the set {Ŷk(s) : s ∈ S0,k} to obtain a value function

Vk ∈ F̄ . See Assumption 4.2.1.

4 From each s ∈ S1,k, run MCTS with parameters M1, d, and evaluator

LeafEval. Return estimated value of each s, denoted Ûk(s). See

Assumption 4.2.3.

5 For each s ∈ S1,k and a ∈ A, create estimate Q̂k(s, a) ≈ (TaVk)(s) by

averaging L1 transitions from p( ·|s, a). See Assumption 4.2.4.

6 Use Classify to solve a cost-sensitive classification problem and

obtain πk+1 ∈ Π̄. Costs are defined using {Ûk(s) : s ∈ S1,k} and

{Q̂k(s, πk+1(s)) : s ∈ S1,k}. See Assumption 4.2.4. Increment k and

return to Step 1.

end
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Figure 4.1: Illustration of Feedback-Based Tree Search

The illustration given in Figure 4.1 shows the interactions (and feedback loop) of

the basic components of the algorithm: (1) a set of tree search runs initiated from

a batch of sampled states (triangles), (2) leaf evaluation using πk and Vk is used

during tree search, and (3) updated PFA and VFA πk+1 and Vk+1 using tree search

results. Notice that depending on MDP dynamics from the initial state, tree search

may expand differently sized trees (as indicated by the wide/narrow triangles).

4.2.3 Assumptions

Algorithm 5 shows the algorithm written with general subroutines Regress, MCTS,

LeafEval, and Classify, allowing for variations in implementation suited for dif-

ferent problems. However, our analysis assumes specific choices and properties of

these subroutines, which we describe now. The regression step solves a least absolute

deviation problem to minimize an empirical version of

‖f − V πk‖1, ρ0 =

∫

S
|f(s)− V πk(s)|ρ0(ds),

as described in the first assumption.

Assumption 4.2.1 (Regress Subroutine). For each si ∈ S0,k, define si = sij0 for all

j. Let Ŷk(s
i) be an estimate of V πk(si) using M0 rollouts and Vk, the VFA resulting
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from Regress, be obtained via least absolute deviation regression:

Ŷk(s
i
0) =

1

M0

M0∑

j=1

∞∑

t=0

γt r(sijt , πk(s
ij
t )), (4.2.2)

Vk ∈ argmin
f∈F̄

1

N0

N0∑

i=1

∣∣f(si)− Ŷk(si)
∣∣. (4.2.3)

There are many ways that LeafEval may be defined. The standard leaf evaluator

for MCTS is to simulate a default or “rollout” policy (Browne et al., 2012b) until the

end of the game, though in related tree search techniques, authors have also opted

for a value function approximation (Campbell et al., 2002; Enzenberger, 2004). It is

also possible to combine the two approximations: Silver et al. (2016a) uses a weighted

combination of a full rollout from a pre-trained policy and a pre-trained value function

approximation.

Assumption 4.2.2 (LeafEval Subroutine). Our approach uses a partial rollout of

length h ≥ 0 and a value estimation at the end. LeafEval produces unbiased obser-

vations of

Jk(s) = E

[
h−1∑

t=0

γtr(s̃t, πk(s̃t)) + γh Vk(s̃h)

]
, (4.2.4)

where s̃0 = s.

This is motivated by our MOBA application, where we observed that even short

rollouts (as opposed to simply using a VFA) are immensely helpful in determining

local outcomes (e.g., dodging attacks, eliminating minions, health regeneration). At

the same time, we found that numerous full rollouts simulated using the relatively

slow and complex game engine is far too time-consuming within tree search.

We also need to make an assumption on the sample complexity of MCTS, of which

there are many possible variations/implementations (Chaslot et al., 2006; Coulom,

2006; Kocsis and Szepesvári, 2006; Gelly and Silver, 2007; Couëtoux et al., 2011a;b;

Al-Kanj et al., 2016; Jiang et al., 2017). Particularly relevant to our continuous-state
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setting are tree expansion techniques called progressive widening and double progres-

sive widening, proposed in Couëtoux et al. (2011a), which have proven successful in

problems with continuous state/action spaces. To our knowledge, precise analysis of

the sample complexity is only available for stylized versions of MCTS on finite prob-

lems, like Teraoka et al. (2014) and Kaufmann and Koolen (2017). Theorems from

these two papers show upper bounds on the number of iterations needed so that with

high probability (greater than 1 − δ), the value at the root node is accurate within

a tolerance of ε. Fortunately, there are ways to discretize continuous state MDPs

that enjoy error guarantees, such as Bertsekas (1975), Dufour and Prieto-Rumeau

(2012), or Saldi et al. (2017). These error bounds can be combined with the MCTS

guarantees of Teraoka et al. (2014) and Kaufmann and Koolen (2017) to produce a

sample complexity bound for MCTS on continuous problems. The next assumption

captures the essence of these results (and if desired, can be made precise for specific

implementations through the references above).

Assumption 4.2.3 (MCTS Subroutine). Consider a d-stage, finite-horizon subprob-

lem of (4.2.1) with terminal value function J and initial state is s. Let the result of

MCTS be denoted Û(s). We assume that there exists a function m(ε, δ), such that if

m(ε, δ) iterations of MCTS are used, the inequality |Û(s) − (T dJ)(s)| ≤ ε holds with

probability at least 1− δ.

Now, we are ready to discuss the Classify subroutine. Our goal is to select a pol-

icy π ∈ Π̄ that closely mimics the performance of the MCTS result, similar to practical

implementations in existing work (Guo et al., 2014; Silver et al., 2017; Anthony et al.,

2017). The question is: given a candidate π, how do we measure “closeness” to the

MCTS policy? We take inspiration from previous work in classification-based RL and

use a cost-based penalization of classification errors (Langford and Zadrozny, 2005; Li

et al., 2007; Lazaric et al., 2016). Since Û(si) is an approximation of the performance

of the MCTS policy, we should try to select a policy π with similar performance. To
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estimate the performance of some candidate policy π, we use a one-step rollout and

evaluate the downstream cost using Vk.

Assumption 4.2.4 (Classify Subroutine). For each si ∈ S1,k and a ∈ A, let

Q̂k(s
i, a) be an estimate of the value of state-action pair (si, a) using L1 samples.

Q̂k(s
i, a) =

1

L1

L1∑

j=1

[
r(si, a) + γVk(s̃

j(a))
]
.

Let πk+1, the result of Classify, be obtained by minimizing the discrepancy between

the MCTS result Ûk and the estimated value of the policy under approximations Q̂k:

πk+1 ∈ argmin
π∈Π̄

1

N1

N1∑

i=1

∣∣Ûk(si)− Q̂k(s
i, π(si))

∣∣,

where s̃j(a) are i.i.d. samples from p(· | si, a).

An issue that arises during the analysis is that even though we can control the

distribution from which states are sampled, this distribution is transformed by the

transition kernel of the policies used for rollout/lookahead. Let us now introduce

the concentrability coefficient idea of Munos (2007) (and used subsequently by many

authors, including Munos and Szepesvári (2008), Lazaric et al. (2016), Scherrer et al.

(2015), and Haskell et al. (2016)).

Assumption 4.2.5 (Concentrability). Consider any sequence of m policies

µ1, µ2, . . . , µm ∈ Π. Suppose we start in distribution ν and that the state dis-

tribution attained after applying the m policies in succession, νPµ1Pµ2 · · ·Pµm , is

absolutely continuous with respect to ρ1. We define an m-step concentrability

coefficient

Am = sup
µ1, ...,µm

∥∥∥∥
dνPµ1Pµ2 · · ·Pµm

dρ1

∥∥∥∥
∞
,
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and assume that
∑∞

i,j=0 γ
i+jAi+j < ∞. Similarly, we assume ρ1Pµ1Pµ2 · · ·Pµm , is

absolutely continuous with respect to ρ0 and assume that

A′m = sup
µ1, ...,µm

∥∥∥∥
dρ1Pµ1Pµ2 · · ·Pµm

dρ0

∥∥∥∥
∞

is finite for any m.

The concentrability coefficient describes how the state distribution changes after

m steps of arbitrary policies and how it relates to a given reference distribution.

Assumptions 4.2.1-4.2.5 are used for the remainder of the paper.

4.3 Experiments and Results

4.3.1 Case Study: King of Glory MOBA AI

We implemented Feedback-Based Tree Search within a new and challenging environ-

ment, the recently popular MOBA game King of Glory by Tencent (the game is also

known as Honor of Kings and a North American release of the game is titled Arena

of Valor). Our implementation of the algorithm is one of the first attempts to design

an AI for the 1v1 version of this game.
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Figure 4.2: Screenshot from 1v1 King of Glory

Game Description. In the King of Glory, players are divided into two opposing

teams and each team has a base located on the opposite corners of the game map

(similar to other MOBA games, like League of Legends or Dota 2 ). The bases are

guarded by towers, which can attack the enemies when they are within a certain

attack range. The goal of each team is to overcome the towers and eventually destroy

the opposing team’s “crystal,” located at the enemy’s base. For this paper, we only

consider the 1v1 mode, where each player controls a primary “hero” alongside less

powerful game-controlled characters called “minions.” These units guard the path

to the crystal and will automatically fire (weak) attacks at enemies within range.

Figure 4.2 shows the two heroes and their minions; the upper-left corner shows the

map, with the blue and red markers pinpointing the towers and crystals.

Experimental Setup. We now give a brief summary of our experimental setup

and describe our practical implementation of the algorithm; due to space constraints,

more details are provided in the Appendix C.3. The state of the system is a 41-
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dimensional vector containing information obtained directly from the game engine,

including hero locations, hero health, minion health, hero skill states, and relative

locations to various structures. There are 22 actions, including move, attack, heal,

and special skill actions, some of which are associated with (discretized) directions.

The reward function is designed to mimic reward shaping (Ng et al., 1999) and uses a

combination of signals including health, kills, damage dealt, and proximity to crystal.

We trained five King of Glory agents, using the hero DiRenJie:

1. The “FBTS” agent is trained using our feedback-based tree search algorithm

for K = 7 iterations of 50 games each. The search depth is d = 7 and rollout

length is h = 5. Each call to MCTS ran for 400 iterations.

2. The second agent is labeled “NR” for no rollouts. It uses the same parameters

as the FBTS agent except no rollouts are used. At a high level, this bears some

similarity to the AlphaGo Zero algorithm (Silver et al., 2017) in a batch setting.

3. The “DPI” agent uses the direct policy iteration technique of Lazaric et al.

(2016) for K = 10 iterations. There is no value function and no tree search (due

to computational limitations, more iterations are possible when tree search is

not used).

4. We then have the “AVI” agent, which implements approximate value itera-

tion (De Farias and Van Roy, 2000; Van Roy, 2006; Munos, 2007; Munos and

Szepesvári, 2008) for K = 10 iterations. This algorithm can be considered a

batch version of DQN (Mnih et al., 2013).

5. Lastly, we consider an “SL” agent trained via supervised learning on a dataset

of approximately 100,000 state/action pairs of human gameplay data. Notably,

the policy architecture used here is consistent with the previous agents.
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In fact, both the policy and value function approximations are consistent across

all agents; they use fully-connected neural networks with five and two hidden layers,

respectively, and SELU (scaled exponential linear unit) activation (Klambauer et al.,

2017). The initial policy π0 takes random actions: move (w.p. 0.5), directional attack

(w.p. 0.2), or a special skill (w.p. 0.3). Besides biasing the move direction toward

the forward direction, no other heuristic information is used by π0. MCTS was chosen

to be a variant of UCT (Kocsis and Szepesvári, 2006) that is more amenable toward

parallel simulations: instead of using the argmax of the UCB scores, we sample actions

according to the distribution obtained by applying softmax to the UCB scores.

In the practical implementation of the algorithm, Regress uses a mean squared

error loss while Classify combines a negative log-likelihood loss with a cosine proxim-

ity loss (due to continuous action parameters; see supplementary material), differing

from the theoretical specifications. Due to the inability to “rewind” or “fast-forward”

the game environment to arbitrary states, the sampling distribution ρ0 is implemented

by first taking random actions (for a random number of steps) to arrive at an initial

state and then following πk until the end of the game. To reduce correlation during

value approximation, we discard 2/3 of the states encountered in these trajectories.

For ρ1, we follow the MCTS policy while occasionally injecting noise (in the form of

random actions and random switches to the default policy) to reduce correlation.

During rollouts, we use the internal AI for the hero DiRenJie as the opponent.
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Results. As the game is nearly deterministic, our main test methodology is to com-

pare the agents’ effectiveness against a common set of opponents chosen from the

internal AIs. We also added the internal DiRenJie AI as a “sanity check” baseline

agent. To select the test opponents, we played the internal DiRenJie AI against other

internal AIs (i.e., other heroes) and selected six heroes of the marksman type that

the internal DiRenJie AI is able to defeat. Each of our agents, including the internal

DiRenJie AI, was then played against every test opponent. Figure 4.3 shows the

length of time, measured in frames, for each agent to defeat the test opponents (a

value of 20,000 frames is assigned if the opponent won). Against the set of common

opponents, FBTS significantly outperforms DPI, AVI, SL, and the internal AI. How-

ever, FBTS only slightly outperforms NR on average (which is perhaps not surprising

as NR is the only other agent that also uses MCTS). Our second set of results help

to visualize head-to-head battles played between FBTS and the four baselines (all of

which are won by FBTS): Figure 4.4 shows the ratio of the FBTS agent’s gold to

its opponent’s gold as a function of time. Gold is collected throughout the game as

heroes deal damage and defeat enemies, so a ratio above 1.0 (above the red region)

indicates good relative performance by FBTS. As the figure shows, each game ends

with FBTS achieving a gold ratio in the range of [1.25, 1.75].

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Game

0.5

1.0

1.5

2.0

Go
ld

 R
at

io

vs. NR vs. DPI vs. AVI vs. SL

Figure 4.4: In-game Behavior: FBTS vs Competitors

141



The implementation of the algorithm in the 1v1 MOBA game King of Glory pro-

vided us encouraging results against several related algorithms; however, significant

work remains for the agent to become competitive with humans. In the next section,

we provide a sample complexity analysis for feedback-based tree search algorithm .

4.4 Theoretical Analysis

In this section, we provide a full sample complexity analysis of the MCTS-based

reinforcement learning method and show that with large enough sample sizes and

sufficiently large tree search effort, the performance of the estimated policies can

be made close to optimal, up to some unavoidable approximation error. To our

knowledge, batch MCTS-based RL methods have not been theoretically analyzed.

Sample complexity results for MCTS are relatively sparse. Teraoka et al. (2014)

gives a high probability upper bound on the number of playouts needed to achieve

ε-accuracy at the root node for a stylized version of MCTS called FindTopWinner.

More recently, Kaufmann and Koolen (2017) provided high probability bounds on the

sample complexity of two other variants of MCTS called UGapE-MCTS and LUCB-MCTS.

In this paper, we do not require any particular implementation of MCTS, but make

a generic assumption on its accuracy that is inspired by these results.

4.4.1 Technical Lemmas

In this section, we present some technical lemmas that would be used in subsequent

proofs.

Lemma 4.4.1 (Section 4, Corollary 2 of Haussler (1992)). Let G be a set of functions

from X to [0, B] with pseudo-dimension dG < ∞. Then for all 0 < ε ≤ B, it holds
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that

P

(
sup
g∈G

∣∣∣∣
1

m

m∑

i=1

g(X(i))− E
[
g(X)

]∣∣∣∣ > ε

)
≤ 8

(
32eB

ε
log

32eB

ε

)dG

exp

(
− ε2m

64B2

)
,

(4.4.1)

where X(i) are i.i.d. draws from the distribution of the random variable X.

Lemma 4.4.2. Consider a policy µ ∈ Π and suppose each si is sampled i.i.d. from

ρ0. Define initial states sij0 = si for all j. Analogous to Step 5 of the algorithm and

Assumption 1, let:

Ŷ (si) =
1

M0

M0∑

j=1

∞∑

t=0

γt r(sijt , µ(sijt )) and V ∈ argmin
f∈F̄

1

N0

N0∑

i=1

∣∣f(si)− Ŷ (si)
∣∣.

For δ ∈ (0, 1) and ε ∈ (0, Vmax), if the number of sampled states N0 satisfies the

condition:

N0 ≥
(

32Vmax

ε

)2 [
log

32

δ
+ 2dF̄ log

64eVmax

ε

]
=: Γa(ε, δ),

and the number of rollouts performed from each state M0 satisfies:

M0 ≥ 8

(
Vmax

ε

)2

log
8N0

δ
=: Γb(ε, δ),

then we have the following bound on the error of the value function approximation:

‖V − V µ‖1,ρ0 ≤ min
f∈F̄
‖f − V µ‖1,ρ0 + ε,

with probabilty at least 1− δ.

Proof. Recall that the estimated value function V satisfies

V ∈ argmin
f∈F̂

1

Nv

Nv∑

i=1

∣∣∣∣∣f(siv)− 1

M0

M0∑

j=1

[
V π(si0) + ξj(si0)

]∣∣∣∣∣,
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where for each i, the terms ξj(si0) are i.i.d. mean zero error. The inner summation over

j is an equivalent way to write Ŷ (si0). Noting that the rollout results V µ(si0)+ξj(si0) ∈

[0, Vmax], we have by a union bound followed by Hoeffding’s inequality:

P
(

max
i

∣∣Ŷ (si0)− V µ(si0)
∣∣ > ε

)
= P

(N0⋃

i=1

∣∣Ŷ (si0)− V µ(si0)
∣∣ > ε

)

≤
N0∑

i=1

P
( ∣∣Ŷ (si0)− V µ(si0)

∣∣ > ε
)

≤ 2N0 exp
(
− 2M0ε

2

(Vmax − 0)2

)

= N0 ∆1(ε,M0), (4.4.2)

where ∆1(ε,M0) = 2 exp (−2M0 ε
2/V 2

max). Next, we define the loss minimizing func-

tion f ∗ ∈ argminf∈F̄ ‖f − V µ‖1,ρ0 and define the function

∆2(ε,N0) = 8

(
32eVmax

ε
log

32eVmax

ε

)dF̄

exp

(
− ε2N0

64V 2
max

)
,

representing the right-hand-side of the bound in Lemma 4.4.1 with B = Vmax and

m = N0. By Lemma 4.4.1, the probabilities of the events

{∣∣∣∣‖V − V µ‖1,ρ0 −
1

N0

N0∑

i=1

∣∣V (si0)− V µ(si0)
∣∣
∣∣∣∣ >

ε

4

}
and

{∣∣∣∣‖f ∗ − V µ‖1,ρ0 −
1

N0

N0∑

i=1

∣∣f ∗(si0)− V µ(si0)
∣∣
∣∣∣∣ >

ε

4

} (4.4.3)

are each bounded by ∆2(ε/4, N0). Also, it follows by the definition of V that

1

N0

N0∑

i=1

∣∣V (si0)− Ŷ (si0)
∣∣ ≤ 1

N0

N0∑

i=1

∣∣f ∗(si0)− Ŷ (si0)
∣∣.
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Therefore, using (4.4.2) twice and (4.4.3) once, we have by a union bound that the

inequality

‖V − V µ‖1,ρ0 ≤ minf∈F̄ ‖f − V µ‖1,ρ0 + ε

happens with probability greater than 1 − 2N0 ∆1(ε/4,M0) − 2 ∆2(ε/4, N0). We

then choose N0 so that ∆2(ε/4, N0) = δ/4 (following Haussler (1992), we utilize the

inequality log(a log a) < 2 log(a/2) for a ≥ 5). To conclude, we choose M0 so that

∆1(ε/4,M0) = δ/(4N0).

Lemma 4.4.3 (Sampling Error). Suppose |A| = 2 and let dΠ̄ be the VC-dimension

of Π̄. Consider Z, V ∈ F and suppose each si is sampled i.i.d. from ρ1. Also, let wj

be i.i.d. samples from the standard uniform distribution and g : S×A× [0, 1]→ S be

a transition function such that g(s, a, w) has the same distribution as p( ·|s, a). For

δ ∈ (0, 1) and ε ∈ (0, Vmax), if the number of sampled states N1 satisfies the condition:

N1 ≥ 128

(
Vmax

ε

)2 [
log

8

δ
+ dΠ̄ log

eN1

dΠ̄

]
=: Γc(ε, δ,N1),

and the number of sampled transitions L satisfies:

L1 ≥ 128

(
Vmax

ε

)2 [
log

8

δ
+ dΠ̄ log

eL1

dΠ̄

]
=: Γd(ε, δ, L1),

then we have the bounds:

(a) sup
π∈Π̄

∣∣∣∣
1

N1

N1∑

i=1

|Z(si)− (TπV )(si)| − ‖Z − TπV ‖1,ρ1

∣∣∣∣ ≤ ε w.p. at least 1− δ.

(b) sup
π∈Π̄

∣∣∣∣
1

L1

L1∑

j=1

[
r(si, π(si)) +γV

(
g(si, π(si), wj)

)]
− (TπV )(si)

∣∣∣∣ ≤ ε w.p. at least

1− δ.

Proof. First, we remark that in both (a) and (b), the term within the absolute value

is bounded between 0 and Vmax. A second remark is that we reformulated the problem
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using wj to take advantage of the fact that these random samples do not depend on

the policy π. Such a property is required to invoke (Györfi et al., 2006, Theorem 9.1),

a result that (Lazaric et al., 2016, Lemma 3) depends on. With these two issues in

mind, an argument similar to the proof of (Lazaric et al., 2016, Lemma 3) gives the

conclusion for both (a) and (b).

4.4.2 Sample Complexity Analysis

Before presenting the sample complexity analysis, let us consider a sequence of poli-

cies {π0, π1, π2, . . .} satisfying Tπk+1
T d−1V πk = T dV πk with no error. Bertsekas and

Tsitsiklis (1996, pp. 30-31) shows that πk → π∗ in the finite state and action setting.

Our proposed algorithm 5 can be viewed as approximately satisfying this iteration in

a continuous state space setting, where MCTS plays the role of T d and evaluation of πk

uses a combination of accurate rollouts (due to Classify) and fast VFA evaluations

(due to Regress). The sample complexity analysis requires the effects of all errors to

be systematically analyzed.

For some K ≥ 0, our goal is to develop a high probability upper bound on the

expected suboptimality over the state space of the performance of policy πK under a

testing distribution ν: ‖V ∗ − V πK‖1,ν . Because there is no requirement to control

errors with probability one, bounds in ‖ · ‖1,ν tend to be much more useful in practice

than ones in the traditional ‖ · ‖∞. Notice that:

1

N1

N1∑

i=1

∣∣Ûk(si)− Q̂k(s
i, πk+1(si))

∣∣

≈
∥∥T dV πk − Tπk+1

V πk
∥∥

1,ρ1
,

(4.4.4)

where the left-hand-side is the loss function used in the classification step from As-

sumption 4.2.4. It turns out that we can relate the right-hand-side (under a different

distribution) to the expected suboptimality after K iterations ‖V ∗ − V πK‖1,ν , as
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shown in the following lemma. Full proofs of all results are given in the supplemen-

tary material.

Lemma 4.4.4 (Loss to Performance Relationship). The expected suboptimality of

πK can be bounded as follows:

‖V ∗−V πK‖1,ν ≤ γKd ‖V ∗ − V π0‖∞

+
K∑

k=1

γ(K−k)d
∥∥T dV πk−1 − Tπk V πk−1

∥∥
1,Λν,k

where Λν,k = ν (Pπ∗)
(K−k)d

[
I − (γPπk)

]−1
.

Proof. This proof is a modification of arguments used in (Lazaric et al., 2016, Equa-

tion 8 and Theorem 7). By the fixed point property of Tπk+1
and the definition of the

Bellman operator T , we have

V πk − V πk+1 = TπkV
πk − Tπk+1

V πk+1 (Fixed point property)

≤ T dV πk − Tπk+1
V πk+1 (Definition of operator T )

= T dV πk − Tπk+1
V πk + Tπk+1

V πk − Tπk+1
V πk+1 (Subtracting and adding Tπk+1

V πk)

= T dV πk − Tπk+1
V πk + (γPπk+1

)
(
V πk − V πk+1

)
. (4.4.5)

Rearranging terms in equation 4.4.5, we have that

[
I − (γPπk+1

)
](
V πk − V πk+1

)
≤ T dV πk − Tπk+1

V πk . (4.4.6)

The term
[
I− (γPπk+1

)
]

is invertible and
[
I− (γPπk+1

)
]−1

=
∞∑
j=0

(γPπk+1
)j has positive

elements. Therefore,

V πk − V πk+1 ≤
[
I − (γPπk+1

)
]−1(

T dV πk − Tπk+1
V πk

)
. (4.4.7)
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Similarly, we will bound the difference between V ∗ and V πk+1 in terms of the

distances between V ∗ − V πk and V πk − V πk+1 :

V ∗ − V πk+1 = Tπ∗V
∗ − Tπk=1

V πk+1

= Tπ∗V
∗ − T dV πk + T dV πk − Tπk=1

V πk+1

≤ Tπ∗V
∗ − T dπ∗V πk + T dV πk − Tπk=1

V πk+1

≤ (γPπ∗)
d
(
V ∗ − V πk

)
+
(
T dV πk − Tπk=1

V πk+1
)

= (γPπ∗)
d
(
V ∗ − V πk

)
+ T dV πk − Tπk+1

V πk + (γPπk+1
)
(
V πk − V πk+1

)
.

(4.4.8)

Using the bound V πk − V πk+1 ≤ [I − (γPπk+1
)]−1 (T dV πk − Tπk+1

V πk) from (4.4.7) on

the last term of the right side of (4.4.8) along with a power series expansion on the

inverse, we obtain:

V ∗ − V πk+1 ≤ (γPπ∗)
d (V ∗ − V πk) +

[
I + (γPπk+1

)
∞∑

j=0

(γPπk+1
)j
] (
T dV πk − Tπk+1

V πk
)

= (γPπ∗)
d (V ∗ − V πk) +

[
I +

∞∑

j=1

(γPπk+1
)j
] (
T dV πk − Tπk+1

V πk
)

= (γPπ∗)
d (V ∗ − V πk) +

[ ∞∑

j=0

(γPπk+1
)j
] (
T dV πk − Tπk+1

V πk
)

= (γPπ∗)
d (V ∗ − V πk) +

[
I − (γPπk+1

)
]−1 (

T dV πk − Tπk+1
V πk

)
,

which can be iterated to show:

V ∗−V πK ≤ (γPπ∗)
Kd (V ∗−V π0)+

K∑

k=1

(γPπ∗)
(K−k)d

[
I−(γPπk)

]−1 (
T dV πk−Tπk+1

V πk
)
.

The statement from the lemma follows from taking absolute value, bounding by the

maximum norm, and integrating.
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‖V ∗ − V πK‖1,ν =

∫

S

∣∣V ∗(s)− V πK (s)
∣∣ν(ds)

≤
∫

S

∣∣∣(γPπ∗)K d
(
V ∗(s)− V π0(s)

)∣∣∣ν(ds)

+

∫

S

∣∣∣
K∑

k=1

(γPπ∗)
(K−k) d

[
I − (γPπk)

]−1 (
T dV πk(s)− Tπk+1

V πk(s)
)∣∣∣ν(ds)

≤ γK d

∫

S
(Pπ∗)

K d
∣∣∣V ∗(s)− V π0(s)

∣∣∣ν(ds)

+
K∑

k=1

γ(K−k) d

∫

S
(Pπ∗)

(K−k) d
[
I − (γPπk)

]−1
∣∣∣T dV πk(s)− Tπk+1

V πk(s)
∣∣∣ν(ds)

= γKd ‖V ∗ − V π0‖ν(Pπ∗ )K d +
K∑

k=1

γ(K−k) d
∥∥T dV πk−1 − Tπk V πk−1

∥∥
1,Λν,k

≤ γKd ‖V ∗ − V π0‖∞ +
K∑

k=1

γ(K−k) d
∥∥T dV πk−1 − Tπk V πk−1

∥∥
1,Λν,k

where Λν,k = ν (Pπ∗)
(K−k) d

[
I − (γPπk)

]−1
.

From Lemma 4.4.4, we see that the expected suboptimality at iteration K can be

upper bounded by the suboptimality of the initial policy π0 (in maximum norm) plus

a discounted and weighted version of ‖T dV πk−1 − Tπk V
πk−1‖1,ρ1 accumulated over

prior iterations. Hypothetically, if (T dV πk−1)(s)− (Tπk V
πk−1)(s) were small for all k

and all states s, then the suboptimality of πK diminishes geometrically fast. Hence,

we may refer to ‖T dV πk−1 − Tπk V πk−1‖1,ρ1 as the “true loss,” the target term to be

minimized. We now have a starting point for the analysis: if (4.4.4) can be made

precise, then the result can be combined with Lemma 4.4.4 to provide an explicit

bound on ‖V ∗ − V πK‖1,ν . Figure 4.5 shows the various errors that we incur when

relating the objective of Classify to the true loss: the error due to regression using

functions in F̄ ; the error due to sampling the state space according to ρ1; the error of

estimating (TπVk)(s) using the sample average of one-step rollouts Q̂k(s, π(s)); and

of course, the error due to MCTS.
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∥∥ T d V πk − Tπk+1
V πk

∥∥
1, ρ1

1
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N1∑

i=1
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∣∣∣
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Figure 4.5: Various Errors Incurred in Feedback-Based Tree Search

We now give a series of lemmas that help us carry out the analysis outlined in

Figure 4.5. In the algorithmic setting, the policy πk is a random quantity that depends

on the samples collected in previous iterations; however, for simplicity, the lemmas

that follow are stated from the perspective of a fixed policy µ or fixed value function

approximation V rather than πk or Vk. Conditioning arguments will be used when

invoking these lemmas.

Lemma 4.4.5 (Propagation of VFA Error). Consider a policy µ ∈ Π and value

function V ∈ F . Analogous to (4.2.4), let J = T hµ V . Then, under Assumption 4.2.5,

we have the bounds:

(a) supπ∈Π̄ ‖TπV − TπV µ‖1,ρ1 ≤ γA′1 ‖V − V µ‖1,ρ0 ,

(b) ‖T dJ − T dV µ‖1,ρ1 ≤ γd+hA′d+h‖V − V µ‖1,ρ0 .

150



Proof. For part (a), we note the following:

‖TπV − TπV µ‖1,ρ1 = γ

∫

S

∣∣(PπV )(s)− (PπV
µ)(s)

∣∣ ρ1(ds)

= γ

∫

S

∣∣(PπV )(s)− (PπV
µ)(s)

∣∣ ρ1(ds)
dρ0

dρ0

= γ

∫

S

∣∣∣
∫

S

(
V (s̃)− V µ(s)

)
p(ds̃|s, π(s))

∣∣∣ ρ1(ds)
dρ0

dρ0

≤ γ

∫

S

∫

S

∣∣∣V (s̃)− V µ(s)
∣∣∣ p(ds̃|s, π(s)) ρ1(ds)

dρ0

dρ0

= γ

∫

S

d

dρ0

∫

S

∣∣∣V (s̃)− V µ(s)
∣∣∣ p(ds̃|s, π(s)) ρ1(ds) ρ0(ds)

= γ

∫

S

∣∣∣V (s̃)− V µ(s)
∣∣∣ d
dρ0

(∫

S
p(ds̃ |s, π(s)) ρ1(ds)

)
ρ0(ds)

= γ

∫

S

∣∣V (s)− V µ(s)
∣∣ d(ρ1Pπ)

dρ0

ρ0(ds)

≤ γ

∥∥∥∥
d(ρ1Pπ)

dρ0

∥∥∥∥
∞
‖V − V µ‖1,ρ0 .

By the concentrability conditions of Assumption 5, the right-hand-side can be

bounded by γ A′1‖V − V µ‖1,ρ0 . Now, we can apply the same steps with the roles of

TπV and TπV
µ reversed to see that the same inequality holds for ‖TπV − TπV µ‖1,ρ1

and part (a) is complete.

For part (b), we partition the state space S into two sets:

S+ =
{
s ∈ S : (T dJ)(s) ≥ (T dV µ)(s)

}
and S- =

{
s ∈ S : (T dJ)(s) < (T dV µ)(s)

}
.

We start with S+. Consider the finite-horizon d-stage MDP with the same dynamics

as (4.2.1) and terminal condition J . Let πJ1 , π
J
2 , . . . , π

J
d be the time-dependent optimal

policy for this MDP. Thus, we have

TπJ1 TπJ2 · · ·TπJd J = T dJ and TπJ1 TπJ2 · · ·TπJd V
µ ≤ T dV µ.
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Using similar steps as for part (a), the following hold:

∫

S+

[
(T dJ)(s)− (T dV µ)(s)

]
ρ1(ds) ≤

∫

S+

[
(T dT hµ V )(s)− (TπJ1 TπJ2 · · ·TπJd T

h
µ V

µ)(s)
]
ρ1(ds)

≤ γd+h

∫

S+

∣∣V (s)− V µ(s)
∣∣ d(ρ1PπJ1 PπJ2 · · ·PπJd P

h
µ )

dρ0

ρ0(ds)

≤ γd+hA′d+h

∫

S+

∣∣V (s)− V µ(s)
∣∣ ρ0(ds).

Now, using the optimal policy with respect to the d-stage MDP with terminal condi-

tion V µ, we can repeat these steps to show that

∫

S-

[
(T dV µ)(s)− (T dJ)(s)

]
ρ1(ds) ≤ γd+hA′d+h

∫

S-

∣∣V (s)− V µ(s)
∣∣ ρ0(ds).

Summing the two inequalities, we obtain:

‖T dJ − T dV µ‖1,ρ1 ≤ γd+hA′d+h

[∫

S+

∣∣V (s)− V µ(s)
∣∣ ρ0(ds) +

∫

S-

∣∣V (s)− V µ(s)
∣∣ ρ0(ds)

]

= γd+hA′d+h ‖V − V µ‖1,ρ0 ,

which completes the proof.

The lemma above addresses the fact that instead of using V πk directly, Classify

and MCTS only have access to the estimates Vk and Jk = T hπkVk (h steps of rollout with

an evaluation of Vk at the end), respectively. Note that propagation of error in Vk is

discounted by γ or γd+h and since the lemma converts between ‖ · ‖1,ρ1 and ‖ · ‖1,ρ0 ,

it is also impacted by the concentrability coefficients A′1 and A′d+h.

Let dΠ̄ be the VC-dimension of the class of binary classifiers Π̄ and let dF̄ be the

pseudo-dimension of the function class F̄ . The VC-dimension is a measure of the

capacity of Π̄ and the notion of a pseudo-dimension is a generalization of the VC-

dimension to real-valued functions (see, e.g., Pollard (1990), Haussler (1992), Mohri

et al. (2012) for definitions of both). Similar to Lazaric et al. (2016) and Scherrer
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et al. (2015), we will present results for the case of |A| = 2 and note that the extension

to multiple actions is possible by performing an analysis along the lines of Lazaric

et al. (2016, Section 6). We now quantify the error illustrated in Figure 4.6. Define

the quantity B′γ = γA′1 + γd+hA′d+h, the sum of the coefficients from Lemma 4.4.5.

∥∥ T d V πk − Tπk+1
V πk

∥∥
1, ρ1

∥∥ V k − V πk
∥∥

1, ρ0

∥∥ T dJk − Tπk+1
Vk

∥∥
1, ρ1

state space sampling

approximation over F̄ B′
γ min

f∈F̄
‖f − V πk‖1, ρ0

additional error ǫ

min
π∈Π̄

‖T d V πk − Tπ V πk‖1, ρ1

state/rollout sampling

approximation over Π̄

“true loss of πk+1”
tree search error

Figure 4.6: Various Errors Analyzed in Lemma 4.4.6

Lemma 4.4.6. Suppose the regression sample size N0 is

O
(
(VmaxB

′
γ)

2 ε−2
[
log(1/δ) + dF̄ log(VmaxB

′
γ/δ)

])

and the sample size M0, for estimating the regression targets, is

O
(
(VmaxB

′
γ)

2 ε−2
[
log(N0/δ)

])
.

Furthermore, there exist constants C1, C2, C3, and C4, such that if N1 and L1 are

large enough to satisfy

N1 ≥ C1V
2

max ε
−2
[
log(C2/δ) + dΠ̄ log(eN1/dΠ̄)

]
,

L1 ≥ C1V
2

max ε
−2
[
log(C2N1/δ) + dΠ̄ log(eL1/dΠ̄)

]
,

and if M1 ≥ m(C3 ε, C4δ/N1),

‖T dV πk − Tπk+1
V πk‖1,ρ1 ≤ B′γ min

f∈F̄
‖f − V πk‖1,ρ0

+ min
π∈Π̄
‖T dV πk − TπV πk‖1,ρ1 + ε
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with probability at least 1− δ.

We first give an intuition for the proof of Lemma 4.4.6. By adding and subtracting

terms, applying the triangle inequality, and invoking Lemma 4.4.5, we see that:

‖T dV πk − Tπk+1
V πk‖1,ρ1 ≤ B′γ ‖Vk − V πk‖1,ρ0

+ ‖T dJk − Tπk+1
Vk‖1,ρ1 ,

Here, the error is split into two terms. The first depends on the sample S0,k and

the history through πk while the second term depends on the sample S1,k and the

history through Vk. We can thus view πk as fixed when analyzing the first term and

Vk as fixed when analyzing the second term (details in the supplementary material).

The first term ‖Vk − V πk‖1,ρ0 contributes the quantity minf∈F̄ ‖f − V πk‖1,ρ0 in the

final bound with additional estimation error contained within ε. The second term

‖T dJk − Tπk+1
Vk‖1,ρ1 contributes the rest (see Figure 4.6).

The first two terms on the right-hand-side are related to the approximation power

of F̄ and Π̄ and can be considered unavoidable. We upper-bound these terms by

maximizing over Π̄, in effect removing the dependence on the random process πk in

the analysis of the next theorem. We define:

D0(Π̄, F̄) = max
π∈Π̄

min
f∈F̄
‖f − V π‖1,ρ0 ,

Dd
1(Π̄) = max

π∈Π̄
min
π′∈Π̄
‖T dV π − Tπ′V π‖1,ρ1 ,

two terms that are closely related to the notion of inherent Bellman error (Antos

et al., 2008; Munos and Szepesvári, 2008; Lazaric et al., 2016; Scherrer et al., 2015;

Haskell et al., 2017). Also, let Bγ =
∑∞

i,j=0 γ
i+jAi+j, which was assumed to be finite

in Assumption 4.2.5. Now we present the formal proof for Lemma 4.4.6.
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Proof. On each iteration of the the algorithm, two random samples are used: S0,k

and S1,k. From S0,k, we obtain Vk and from S1,k we obtain πk+1. Let Sk = (S0,k,S1,k)

represent both of the samples at iteration k. We define:

Gk−1 = σ{S1,S2, . . . ,Sk−1} and G ′k−1 = σ{S1,S2, . . . ,Sk−1,S0,k}.

Due to the progression of the algorithm with two random samples per iteration, we

will analyze each iteration in two steps. We first separate the two random samples

by noting that:

‖T dV πk − Tπk+1
V πk‖1,ρ1 ≤ ‖T dV πk − T dJk‖1,ρ1 + ‖Tπk+1

Vk − Tπk+1
V πk‖1,ρ1

+ ‖T dJk − Tπk+1
Vk‖1,ρ1

≤ (γA′1 + γd+hA′d+h) ‖Vk − V πk‖1,ρ0 + ‖T dJk − Tπk+1
Vk‖1,ρ1 ,

(4.4.9)

where the first inequality follows by adding and subtracting terms and the triangle

inequality while the second inequality follows by Lemma 2. Now, we may analyze the

first term on the right-hand-side conditional on Gk−1 and the second term conditional

on G ′k−1.

As it is currently stated, Lemma 4.4.2 gives an unconditional probability for a fixed

policy µ. However, since S0,k is independent from Gk−1 and πk is Gk−1-measurable,

we can utilize Lemma 4.4.2 in a conditional setting using a well-known property of

conditional expectations (Resnick, 2013, Property 12, Section 10.3). This property

will be repeatedly used in this proof (without further mention). We obtain that for

a sample size N0 ≥ Γa(ε′/(γA′1 + γd+hA′d+h), δ
′),

P
(
‖Vk − V πk‖1,ρ0 > min

f∈F̄
‖f − V πk‖1,ρ0 + ε′/(γA′1 + γd+hA′d+h)

∣∣Gk−1

)
≤ δ′. (4.4.10)
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It remains for us to analyze the error of the second term ‖T dJk − Tπk+1
Vk‖1,ρ1 . By

part (a) of Lemma 4.4.3 with Z = T dJk and V = Vk, if N1 ≥ Γc(ε
′, δ′, N1) and si are

sampled i.i.d. from ρ1, we have

P

(∣∣∣∣
1

N1

N1∑

i=1

∣∣(T dJk)(si)− (Tπk+1
Vk)(s

i)
∣∣−
∥∥T dJk − Tπk+1

Vk
∥∥

1,ρ1

∣∣∣∣ > ε′
∣∣∣G ′k−1

)
≤ δ′.

(4.4.11)

The term (Tπk+1
Vk)(s

i) is approximated using L1 samples. Part (b) of Lemma 4.4.3

along with a union bound shows that if L1 ≥ Γd(ε′, δ′/N1, L1), then

P
(

max
i

∣∣Q̂k(s
i, πk+1(si))− (Tπk+1

Vk)(s
i)
∣∣ > ε′

∣∣G ′k−1

)
≤ δ′. (4.4.12)

Similarly, by Assumption 3, if the number of iterations of MCTS M1 exceeds

m(ε′, δ′/N1), we can take a union bound to arrive at

P
(

max
i

∣∣Ûk(si)− (T dJk)(s
i)
∣∣ > ε′

∣∣∣G ′k−1

)
≤ δ′. (4.4.13)

The maximum over i can be replaced with an average over the N1 samples and the

conclusion of the last two bounds would remain unchanged. Since πk+1 is assumed

to optimize a quantity involving Ûk and Q̂k, we want to relate this back to ‖T dJk −

Tπk+1
Vk‖1,ρ1 . Indeed, taking expectation of both sides of inequalities (4.4.11)–(4.4.13)

and then combining, we obtain that with probability at least 1− 3δ′,

∥∥T dJk − Tπk+1
Vk
∥∥

1,ρ1
≤ 1

N1

N1∑

i=1

∣∣Ûk(si)− Q̂k(s
i, πk+1(si))

∣∣+ 3ε′

≤ 1

N1

N1∑

i=1

∣∣Ûk(si)− Q̂k(s
i, π̃(si))

∣∣+ 3ε′
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where π̃ ∈ argminπ∈Π̄ ‖T dV πk − TπV πk‖1,ρ1 . Following the same steps in reverse , we

have:
∥∥T dJk − Tπk+1

Vk
∥∥

1,ρ1
≤ min

π∈Π̄
‖T dV πk − TπV πk‖1,ρ1 + 6ε′, (4.4.14)

with probability at least 1−6 δ′. Finally, we take expectation of both sides of (4.4.10)

and then combine with (4.4.9) and (4.4.14) while setting ε′ = ε/7 and δ′ = δ/7 to

obtain

‖T dV πk − Tπk+1
V πk‖1,ρ1 ≤ (γA′1 + γd+hA′d+h) min

f∈F̄
‖f − V πk‖1,ρ0

+ min
π∈Π̄
‖T dV πk − TπV πk‖1,ρ1 + ε

with probability at least 1− δ.

Theorem 4.4.7. Suppose the sample size requirements of Lemma 4.4.6 are satisfied

with ε/Bγ and δ/K replacing ε and δ, respectively. Then, the suboptimality of the

policy πK can be bounded as follows:

‖V ∗ − V πK‖1,ν ≤Bγ [B′γ D0(Π̄, F̄) + Dd
1(Π̄)]

+ γKd ‖V ∗ − V π0‖∞ + ε,

with probability at least 1− δ.

Proof. This proof essentially synthesizes the previous results. From the definition of

D0(Π̄, F̄) and Dd
1(Π̄) from the main paper, we note that if the sample size assumptions

of Lemma 3 are satisfied,

‖T dV πk−Tπk+1
V πk‖1,ρ1 ≤ B′γ D0(Π̄, F̄) + Dd

1(Π̄) + ε, (4.4.15)

with probability at least 1− δ. This removes any dependence on the iteration k from

the right-hand-side. We now integrate all results with Lemma 1 in order to find a
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bound on the suboptimality ‖V ∗−V πK‖1,ν . Consider the distribution Λν,k, as defined

in Lemma 1, which needs to be related to ν. We can use the power series expansion

to write:

Λν,k = ν (Pπ∗)
(K−k) d

∞∑

i=0

(γPπk)
i.

For a fixed i, the measure ν is transformed by applying π∗ a total of K− k times and

then πk a total of i times. We see that the summation term on the right-hand-side

of Lemma 1 can be upper-bounded in the following way:

K∑

k=1

γ(K−k) d
∥∥T dV πk−1 − Tπk V πk−1

∥∥
1,Λν,k

≤
(K−1∑

j=0

∞∑

i=0

γj+iAj+i

)
max
k≤K

∥∥T dV πk−1 − Tπk V πk−1
∥∥

1,ρ1
,

where we use Assumption 5 with m = K−k+i, maximize over k for the loss term, and

then re-index with j = K − k. The coefficient in parentheses can be upper-bounded

by Bγ (since all Aj+i are nonnegative). Finally, we use Inequality (4.4.15) and then

a union bound over the K iterations to conclude the statement of the theorem.

‖V ∗ − V πK‖1,ν ≤ γKd ‖V ∗ − V π0‖∞ +
K∑

k=1

γ(K−k)d
∥∥T dV πk−1 − Tπk V πk−1

∥∥
1,Λν,k

≤ γKd ‖V ∗ − V π0‖∞ +

(K−1∑

j=0

∞∑

i=0

γj+iAj+i

)
max
k≤K

∥∥T dV πk−1 − Tπk V πk−1
∥∥

1,ρ1

≤ γKd ‖V ∗ − V π0‖∞ +
∞∑

i,j=0

γi+jAi+j

[
B′γ D0(Π̄, F̄) + Dd

1(Π̄) + ε
]

= γKd ‖V ∗ − V π0‖∞ +Bγ

[
B′γ D0(Π̄, F̄) + Dd

1(Π̄) + ε
]

158



4.5 Conclusion and Future Work

We modeled the long-term multiperiod sequential decision problems as Markov De-

cision Processes (MDPs). Moreover, we proposed a batch, Monte Carlo Tree Search

(MCTS) based reinforcement learning (RL) method that operates on the contin-

uous state, finite action Markov Decision Processes and exploits the idea that leaf-

evaluators can be updated to produce a stronger tree search using previous tree search

results. Function approximators are used to track policy and value function approx-

imations, where the latter is used to reduce the length of the tree search rollout

(oftentimes, the rollout of the policy becomes a computational bottle-neck in com-

plex environments). In addition, we provided a full sample complexity analysis of

the method and show that with large enough sample sizes and sufficiently large tree

search effort, the performance of the estimated policies can be made close to optimal,

up to some unavoidable approximation error. To our knowledge, batch MCTS-based

RL methods have not been theoretically analyzed. Furthermore, the feedback-based

tree search algorithm is tested on the popular MOBA game King of Glory (a North

American version of the same game is titled Arena of Valor), where we build a com-

petitive AI agent for the 1v1 mode of the game which demonstrates the power of our

approach.

Future Direction

The results of this work may lead to different direction. In what follows, we summarize

some in terms of application and theory. Several directions appear promising for

future work:

Our primary methodological avenues for future work are (1) to analyze a self-play

variant of the algorithm and (2) to consider related techniques in multi-agent domains

(see, e.g., Hu and Wellman (2003)). The implementation of the algorithm in the 1v1
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MOBA game King of Glory provided us encouraging results against several related

algorithms; however, significant work remains to become competitive with humans.

In addition, the 5v5 version of the game remains a captivating challenge. Moreover,

the next step for reinforcement learning is to leverage past experience to quickly learn

new environments. Some of the current algorithms are prone to memorization and

can’t adapt well to new environments. While the case studies focuses on challenging

video games, we hope the techniques developed would be applicable to a wide variety

of domains.
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Part IV

APPENDIX
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Appendix A

Appendix to Chapter 2

A.1 Simulational-Inference Framework

Simulational- Inference is a framework that uses simulation to generate data to do

inference. This framework could be useful when you have limited data on the real

system or limited high-quality data. Sometimes the available data may not contain

some important features. Simulational- Inference deals with the issue of limited data

by using simulation to generate additional data. We now describe the three major

components of the simulational inference framework:

1. Simulator Model Specification: In this step, we specify a parametric model

for the simulator.

2. Simulator Parameter Calibration: This step leverages real data to learn

the parameters of the simulator.

3. Simulator Validation and Inference: This step verifies that the simulator is

as close as possible to the real system. This is to ensure reliable results from the

simulator. Thereafter, the simulator is ready for inference which may involve

using the simulator to generate new data for inference.
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Simulator Model Specification

We will mostly use queueing models to illustrate this framework, however, this

framework is much more general. Let’s consider the finite capacity queueing

models:Mλ(t)/Mµ(t)/1/k and Mλ(t)/G/1/k. The second queueing model has a general

service distribution G.

Simulator Parameter Calibration

In this section, we describe methods for estimating the intensity rate of the arrival

process and the service time distribution from observed data. Estimating the arrival

intensity and the distribution of service times from data are very important in practice

to ensure the simulator closely mimics the actual system.

Arrival Intensity Estimation

We first define the useful Poisson process.

Definition A.1.1. A random process {Nt} is called a counting process if it satisfies

the following:

• N0 = 0 (i.e it starts at the origin.);

• Nt is increasing function of t;

• Nt increments by one every time that it changes.

Definition A.1.2. A counting process {Nt}t≥0 is called a Poisson process with rate

λ > 0, if it satisfies the following:

• N0 = 0

• Independent increments i.e Nt −Ns |= (independent) {Nr}r≤s, for t ≥ s

• Stationary increments i.e Nt −Ns ∼ Pois
(
λ(t− s)

)
, for t ≥ s

163



A Poisson process is a very popular counting process. It is used for counting the

occurrences of certain random events that appear to happen at a certain rate. A

random variable X is said to be a Poisson random variable with parameter λ, written

as X ∼ Poisson(λ), if its Probability mass function is given by

PX

{
X = k

}
=





e−λλk

k!
for k ∈ RX

0 otherwise,

where RX = {0, 1, 2, . . .} is the range. Poisson process has stationary increments. In

other words, the distribution of the number of arrivals in any interval depends only

on the length of the interval and does not depend on the location of the interval on

the real line.

Definition A.1.3. A counting process {Nt}t≥0 is called a Nonhomogenous Poisson

process with integrable rate function λ : R+ → R+ if it satisfies the following:

• Independent increments i.e Nt −Ns |= {Nr}r≤s, for t > s

• Stationary increments i.e Nt −Ns ∼ Pois
( ∫ t

s
λ(u)du

)
, for t > s

A non-homogeneous Poisson process is similar to the regular Poisson process,

except that the average rate of arrivals is no longer stationary with time. This is

somewhat a generalization of the regular Poisson process. However, this general-

ization does not come without cost. The cost here is that we lose the stationary

increment property of the regular Poisson process.

Parametric Estimation: One approach to estimating the arrival intensity function

λ(t) is via a parametric method. This approach assumes that the observed data

are from a parametric family of distribution. This method involves two main steps;

one must first decide on the functional form of the intensity function and thereafter

estimate the parameters of the intensity function:
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1. First Step:This step assumes the arrival intensity rate λ(t) has a certain func-

tional form. Some examples of common functional forms:

• Polynomial: λ(t) = a0 + a1t+ a2t
2 + . . . ant

n, λ(t) ≥ 0, ∀t

• Exponentials of polynomial: λ(t) = exp
(
a0 + a1t+ a2t

2 + . . . ant
n
)

• Fourier Series: λ(t) = 1
2
a0 +

∞∑
n=1

(an cos(nt) + bn sin(nt)), λ(t) ≥ 0, ∀t

• Exponential of Fourier: λ(t) = exp
(

1
2
a0+

∞∑
n=1

(an cos(nt)+bn sin(nt))
)
, λ(t) ≥

0, ∀t

2. Second Step: After the parametric distribution of λ(t) has been selected, the

step estimates the corresponding parameters using the observed data. This es-

sentially reduces the problem of estimating the intensity rate λ(t) to the problem

of estimating a set of parameters.

0 2 4 6 8 10 12
t

4

2

0

2

4

6

(t)

observed data
Fitted Funtion

Figure A.1: In this example, the parametric form of the observe data has the form:

λ(t) = a0 +a1 sin(ωt+φ) and estimating its parameter from the oberseved data gives

λ̂(t) = 0.52 + 3.04 sin(1.15t− 0.01).

The parametric approach works well, as shown in Figure A.1, if the assumption that

the observed data belong to the known parametric family is correct. Moreover, it
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is a much easier problem to estimate a bunch of parameters than to estimate an

arbitrary function. In the literature, Maximum Likelihood Estimation (MLE) and

other methods can be used to estimate these parameters. However, if the parametric

assumption fails, then the parametric approach becomes very restrictive. The good

news is there is another approach that does not make any assumption about the

parametric form of λ(t).

Non-parametric Estimation: The non-parametric approach directly estimates

λ(t) from the observed sample data. it is not always the case that the data gen-

erating distribution is known a priori. Since we rarely have such knowledge, the

non-parametric method is preferable. In what follows, we describe a non-parametric

approach for estimating the intensity function of the Poisson process. Let λ(t) denote

the non-negative intensity function and define the cumulative intensity function:

Λ(x) =

∫ x

0

λ(t)dt, x > 0, (A.1.1)

where Λ(x) is assumed to be monotone right continuous function. Now consider the

probability density function on 0 ≤ t ≤ t0, defined as follows:

f(t) =
λ(t)

Λ(t0)− Λ(0)
, 0 ≤ t ≤ t0. (A.1.2)

Suppose we have observed a NHPP for a fixed time interval (0, t0] in which n(n 6= 0)

arrivals occurred at times T1 < T2 < . . . < Tn < t0. f(t) can be estimated from

a random sample T1, T2, . . . , Tn by the nonparametric kernel-type density estimator.

Conditional on having observed n events in the interval (0, t0], Ti are distributed as

the ordered statistics from a sample with distribution function f(t) Arkin and Leemis

(2000). The kernel density estimator for f(t) from random sample T1, T2, . . . , Tn is
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defined by:

f̂n(t) =
1

n

n∑

j=1

1

b(n)
W

(
t− Tj
b(n)

)
(A.1.3)

This density estimator does not make any parametric assumptions on f(t). However,

it requires a choice of weight function and the bandwidth function. The weight

function W (u) is the kernel function which satisfies the following properties:

1. W (u) is integrable

2.
∫
W (t)dt = 1

3. W (u) ≥ 0 (non-negative)

And the bandwidth function b(n) satisfies the following properties:

1. limn→∞ b(n) = 0

2. b(n) > 0 ( positive )

Lemma A.1.1. The estimator f̂n(t) is a non-negative density.

Proof.

∫
f̂n(t) =

∫
1

n

n∑

j=1

1

b(n)
W

(
t− Tj
b(n)

)
dt

=
1

n

n∑

j=1

∫
1

b(n)
W

(
t− Tj
b(n)

)
dt

=
1

n

n∑

j=1

∫
1

b(n)
W (u)du (A.1.4)

=

∫
W (u)du

= 1 (A.1.5)
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Equation A.1.4 follows from setting t = u ·b(n)+Tj and the last equality follows from

the property of the kernel W(u) and this completes the proof. Moreover f̂n(t) will

have all the differentiability and continuity properties of the choice of kernel W.

Given that Λ(t) is monotone non-decreasing and right continuous, then the number

of event occurring in the interval (0, t0] has Poisson distribution with parameter

Λ(t0)− Λ(0) =

∫ t0

0

λ(x)dx (A.1.6)

So Λ(t0)−Λ(0) is the mean of poisson random variable on (0, t0] which is estimated by

Nt0 = n, the number of events in (0, t0]. Therefore the estimate of the rate function

is as follows:

̂λ(t;n, t0) = n · f̂n(t)

=
1

b(n)

n∑

j=1

W

(
t− Tj
b(n)

)
. (A.1.7)

Next, we need to measure how well the nonparametric estimator f̂n(t) estimates f(t).

One way is to look at the mean square error (MSE) of the kernel estimate f̂n(t) at a

point t, which is defined as follows:

MSE
(
f̂n(t)

)
= E

[
f̂n(t)− f(t)

]2

= E
[
f̂n(t)− E[f̂n(t)]

]2
+
(
E[f̂n(t)]− f(t)

)2

= V[f̂n(t)] +
(
Bias[f̂n(t)]

)2
. (A.1.8)

Observe that the MSE only measures the accuracy at a fixed point t. However, it is

important to measure the accuracy of the entire function f̂n(t) as an estimate of f(t).

So instead of MSE, we consider the mean integrated squared error (MISE) defined as
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follows:

MISE
(
f̂n(t)

)
= E

[∫ (
f̂n(t)− f(t)

)2
dt

]

=

∫
E
[
f̂n(t)− f(t)

]2

dt

=

∫
MSE

(
f̂n(t)

)
dt

=

∫
V
[
f̂n(t)

]
dt+

∫ (
Bias[f̂n(t)]

)2

dt. (A.1.9)

The second equality follows from the fact that
(
f̂n(t) − f(t)

)2
is non negative, and

the fourth equality follows from linearity of integral.

Lemma A.1.2. The kernel estimate f̂n(t) has the following properties:

E[f̂n(t)] =

∫
1

b(n)
W

(
t− y
b(n)

)
f(y)dy,

Bias[f̂n(t)] =

∫
1

b(n)
W

(
t− y
b(n)

)
[f(y)− f(t)]dy,

and

V[f̂n(t)] =
1

n

[∫ [
1

b(n)2
W 2

(
t− y
b(n)

)]
f(y)dy +

∫ [
1

b(n)
W

(
t− y
b(n)

)
f(y)dy

]2
]

Proof. Since the Tj’s are random variables and f̂n(t) depends on the observations

T1, T2, . . . , Tn, for each t,f̂n(t) is continuous random variable. Hence we can compute
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its expectation and variance.

E[f̂n(t)] = E

[
1

nb(n)

n∑

j=1

W

(
t− Tj
b(n)

)]

=
1

n

n∑

j=1

E
[

1

b(n)
W

(
t− Tj
b(n)

)]

=
1

n

n∑

j=1

∫
1

b(n)
W

(
t− y
b(n)

)
f(y)dy

=

∫
1

b(n)
W

(
t− y
b(n)

)
f(y)dy. (A.1.10)

Bias[f̂n(t)] = E[f̂n(t)]− f(t)

=

∫
1

b(n)
W

(
t− y
b(n)

)
f(y)dy − f(t)

=

∫
1

b(n)
W

(
t− y
b(n)

)
[f(y)− f(t)]dy (A.1.11)

V[f̂n(t)] = V

[
1

nb(n)

n∑

j=1

W

(
t− Tj
b(n)

)]

=
1

n2

n∑

j=1

V
[

1

b(n)
W

(
t− Tj
b(n)

)]

=
1

n2

n∑

j=1

[
E
[

1

b(n)2
W 2

(
t− Tj
b(n)

)]
+ E

[
1

b(n)
W

(
t− Tj
b(n)

)]2
]

=
1

n2

n∑

j=1

[∫ [
1

b(n)2
W 2

(
t− y
b(n)

)]
f(y)dy +

∫ [
1

b(n)
W

(
t− y
b(n)

)
f(y)dy

]2
]

=
1

n

[∫ [
1

b(n)2
W 2

(
t− y
b(n)

)]
f(y)dy +

∫ [
1

b(n)
W

(
t− y
b(n)

)
f(y)dy

]2
]
.
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So with certain regularity condition on the kernel W , we can approximate

MISE
(
f̂n(t)

)
and the approximation will depend on the sample size n, the kernel

function and derivative of the unknown function f(t).

Sampling from the Non-homogenous Poisson Intensity

Let t denote time and I denote the number of events that have occurred by time

t and A(I) denote the most recent event time. Suppose we have an estimated the

Poisson intensity λ̂(t). The idea of sampling from nonhomogeneous Poisson process

with intensity λ̂(t), is to first fix λ0 such that

λ̂(t) ≤ λ0 for all t ≤ T.

Then generate the non-homogeneous process by a random selection of event times of

Poisson process with rate λ0. In other words, by independence, we count the event of

Poi(λ0) with probability λ̂(t)/λ0 . Then the counted process follows a Poi(λ̂(t)) Ross

(2013).
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Algorithm 6: Random sampling for Non-homogeneous Poisson Intensity

Input: Given the time horizon T and the estimated intensity λ̂(t).

Output: {A(i) | i = 1, 2, . . . , I}

1 λ0 = min
λ
{λ|λ̂(t) ≤ λ, t = 1, 2, . . . , T} and initialize t = 0, I = 0;

while t ≤ T do

2 Generate U1 ∼ (0, 1);

3 update t← t+ 1
λ0
log( 1

U1
)

4 Generate U2 ∼ (0, 1);

5 if λ0 · U2 ≤ λ̂(t) then

update I ← I + 1 and A(I)= t

end

end

Estimating General Service-time Distribution G

Given a sample {Xi}ni=i
iid∼ G, where G is the unknown service distribution function.

We would like to infer G using the sample {Xi}ni=i. In what follows, we derive the

empirical distribution function Ĝn:

Ĝn(x) =
1

n

n∑

i=1

{
Xi ≤ x

}
, (A.1.12)

where
{
Xi ≤ x

}
is an indicator function given by:

{
Xi ≤ x

}
=





1 if Xi ≤ x

0 otherwise.

(A.1.13)
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Lemma A.1.3. The estimator Ĝn(x) is unbiased since and MSE
(
Ĝn(x)

)
= V[Ĝn(x)]

Proof.

E[Ĝn(x)] = E

[
1

n

n∑

i=1

{
Xi ≤ x

}
]

=
1

n

n∑

i=1

E
[{
Xi ≤ x

}]

=
1

n

n∑

i=1

P
{
Xi ≤ x

}

= P
{
Xi ≤ x

}

= G(x). (A.1.14)

Lets look at the mean square error (MSE) of Ĝn(x).

MSE
(
Ĝn(x)

)
= E

[
Ĝn(x)−G(x)

]2

= E
[
Ĝn(x)− E[Ĝn(x)]

]2

+
(
E[Ĝn(x)]−G(x)

)2

= V[Ĝn(x)] +
(

Bias[Ĝn(x)]
)2

(A.1.15)

and

Bias[Ĝn(x)] = E[Ĝn(x)]−G(x)

= G(x)−G(x)

= 0 (A.1.16)
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Since the bias term vanishes, the MSE is just the variance.

MSE
(
Ĝn(x)

)
= V[Ĝn(x)]

= V

[
1

n

n∑

i=1

{
Xi ≤ x

}
]

=
1

n2

n∑

i=1

[
E
[{
Xi ≤ x

}2
]
− E

[{
Xi ≤ x

}]2
]

=
1

n2

n∑

i=1

[
E
[{
Xi ≤ x

}]
− E

[{
Xi ≤ x

}]2
]

=
1

n2

n∑

i=1

[
P{Xi ≤ x} − P{Xi ≤ x}2

]

=
1

n

[
P{X1 ≤ x} − P{X1 ≤ x}2

]

=
1

n

[
G(x)−G(x)2

]
(A.1.17)

which implies Ĝn(x) converges to G(x) in probabilistic sense.

P
{
|Ĝn(x)−G(x)| > ε

}
= P

{
|Ĝn(x)−G(x)|2 > ε2

}

≤
E
(
Ĝn(x)−G(x)

)2

ε2

=
MSE

(
Ĝn(x)

)

ε2

=

(
G(x)−G(x)2

)

nε2
. (A.1.18)

By Glivenko-Cantelli Theorem, under our assumptions, we can get a much stronger

convergence result:

sup
y∈R
|Ĝn(x)−G(x)| −→a.s 0 (A.1.19)

as n→∞.
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Figure A.2: As the value of n increases, we get a better approximation of the dis-

tribution for the normal cumulative distribution (CDF) function. Notice that for

n = 1000, the approximation is almost indistinguishable from the Normal CDF
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Figure A.3: As the value of n increases, we get a better approximation of the distri-

bution for the exponential cumulative distribution (CDF) function. Notice that for

n = 1000, the approximation is almost indistinguishable from the Exponential CDF

Although the empirical density estimation is relatively simple, it works well in

practice as depicted in Figures A.2 and A.3. Another interesting method of estimating
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probability density function is the kernel density estimation method which we will

omit.

Sampling from General Service-time Distributions

Continuous Inverse Transform method: Consider a continuous random variable

X whose cumulative distribution function is G. This method uses the following well-

known result.

Lemma A.1.4. Let U ∼ uniform(0, 1) be a uniform random variable. For any

continuous distribution G the random variable X = G−1(U) has distribution G Ross

(2013).

Proof. Note continuity is important for this result to guarantee that G(x) is mono-

tonically increasing.

GX(x) = P{X ≤ x}

= P{G−1(U) ≤ x}

= P{G(G−1(U)) ≤ G(x)}

= P{U ≤ G(x)}

= G(x). (A.1.20)

This result is very useful, it essentially states that one can generate a random vari-

able X, whose continuous distribution is G, by simply generating a uniform random

variable U and evaluating it at the inverted cumulative distribution of X. So if the

distribution G is easily invertible, then the distribution G is easy to sample from.

Discrete Inverse Transform method: consider the discrete version of the inverse

transform method. Assume that X is a discrete random variable with the following
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probability mass function:

P
{
X = xi

}∞
i=0

= pi, (A.1.21)

where
∑∞

i=0 pi = 1. Notice that we can achieve the above probability using a uniform

random variable. Let U ∼ uniform(0, 1) be a uniform random variable, then

P
{
X = xi

}∞
i=0

= P

{
i−1∑

j=0

pj ≤ U <

i∑

i=0

pj

}∞

i=0

= pi. (A.1.22)

Simulator Validation and Inference

It is not always straight forward how to track the evolution of the probabilistic model

via simulation. We essentially generate and observe the stochastic elements of the

model over time and track the variables of interest. During simulation, we continually

track the time variables and the system state variables summarized in Table A.1. And

we update these variables whenever an event occurs.

Variables Notation Description

Time t The discrete time

Counter (NA, ND) The number of arrival and the number of departure at time t

System State n The number of customer in the system at time t

System State (E, F) The number of times the system is empty, full respectively at time t

Table A.1: An example of discrete event simulation variables

Estimating the Queue Length for Mλ(t)/Mµ(t)/1/k

Let Q(t) be the queue length at time t. Use the constructed simulator, we can

estimate the mean number E[Q)(t)] of the system (the number of customers in the

queue or buffer plus the customer in service) as a function of time t. Suppose we
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observe independent and identically distributed samples Q̂(t), Q̂(t), . . . , Q̂(T ), then

we can define the empirical estimator:

ÊQT =
1

T

T∑

t=1

Q̂(t) (A.1.23)

and the true mean number of the system as EQ = E[Q)(t)]. Then by the law of the

large numbers, for T large enough the empirical mean ÊQT will converge to the true

mean EQ.

0 5 10 15 20 25
t

0.0

0.5

1.0

1.5

2.0

E[
Q

(t)
]

Average Queue Length
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Figure A.4: The queue length as a function of time. Given the queueing model

Mλ(t)/Mµ(t)/1/k with the mean Poisson arrival rate of λ(t) = 0.5 and exponential

service rate of µ(t) = 0.8 for all t ∈ [0, T ]. The initial queue length Q(0) = 0.
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Figure A.5: The queue length as a function of time. Given the queueing model

Mλ(t)/Mµ(t)/1/k with the mean Poisson arrival rate of λ(t) = 0.6 + 0.4 · sin(0.2πt),

and exponential service rate of µ(t) = 0.8 + 0.4 · sin(0.2πt) for all t ∈ [0, T ]. The

initial queue length Q(0) = 0.

Estimating the arrivals and Queue Length for Mλ(t)/G/n/∞/FCFS

Understanding arrival rates and expected queue lengths is vital to developing optimal

resource allocation. We use real housekeeping data, tracking the bed cleaning process

at the University of Pittsburgh Medical Center (UPMC) Harmon, Emily Campbell

(2012). The data was collected using a Bed-Tracking system between the years 2010

and 2011, which monitors dirty beds throughout the hospital. The available data

contains information such as the arrival of dirty beds, clean time, in progress time,

and other relevant information. For simulation, we use the historical arrival rate per

hour of each day of the week.
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Empirical Results
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Figure A.6: Plot of different empirical arrival rates. In (a), we plot the empirical

arrival rates by each day of the week. While in (b), we plot the average empirical

arrival rates of the weekdays and weekends.
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Figure A.7: Plot of different empirical expected queue length. In (a), we plot the

empirical expected queue length by each day of the week. In (b), we plot the average

empirical expected queue lengths of the weekdays and weekends.
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Figure A.8: Plot of different empirical expected queue length with error bands for

each day of the week.
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A.2 The Steady State Queue Analysis

Background

We first define a few useful lemmas before we give the steady-state queue analysis

results.

Lemma A.2.1. Let X be an exponential random variable, then X satisfies the mem-

oryless property

P{X ≥ s+ t|X ≥ s} = P{X ≥ t} (A.2.1)

for all positive x and y.

Proof.

P{X ≥ s+ t|X ≥ s} =
P{X ≥ s+ t,X ≥ s}

P{X ≥ s}

=
P{X ≥ s+ t}
P{X ≥ s}

=
e−λ(s+t)

e−λs

= e−λt

= P{X ≥ t}. (A.2.2)

Lemma A.2.2. If X and Y independent exponential random variables with rates λ

and µ respectively, then Z = min{X, Y } is an exponential random variable with rate

λ+ µ.
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Proof.

P{Z > t} = P{min (X, Y ) > t}

= P{X > t, Y > t}

= P{X > t} · P{Y > t}

= e−λt · e−µt

= e−(λ+µ)t. (A.2.3)

Definition A.2.1 (Markov Property). A continuous time stochastic process {X(t) :

0 ≥ t < ∞} which has a denumerable state space S, has the Markov property if for

every n ≥ 2, 0 ≤ t1, < t2, · · · , < tn < tn+1, and any i1, i2, · · · , in, in+1 ∈ S one has

P
{
X(tn+1) = in+1 |X(t1) = i1, . . . , X(tn) = in

}
= P

{
X(tn+1) = in+1 |X(tn) = in

}
.

(A.2.4)

Lemma A.2.3. The following multiple integral identity holds:

∫
· · ·
∫

0<s1<···<sn<t

1ds1 · · · dsn =
tn

n!
(A.2.5)

Proof.

1 =
1

tn
·
(∫ t

0

1ds

)n

=
1

tn
·
∫ t

0

· · ·
∫ t

0

1ds1 · · · dsn

=
1

tn
· n! ·

∫
· · ·
∫

0<s1<···<sn<t

1ds1 · · · dsn (A.2.6)
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Multiplying both sides of the Equation A.2.6 by tn

n!
gives the identity

tn

n!
=

∫
· · ·
∫

0<s1<···<sn<t

1ds1 · · · dsn.

Lemma A.2.4. The sum of i.i.d. exponential random variables Z = X1 +X2 + · · ·+

Xn have gamma(λ, n) distributions.

Proof.

P {Z ≤ t} = P {X1 +X2 + · · ·+Xn ≤ t}

=

∫
· · ·
∫

0<s1+···+sn<t
0≤min(s1,··· ,sn)

e−s1 · · · e−snds1 · · · dsn

=

∫ t

0

e−r ·




∫
· · ·
∫

0<s1+···+sn−1<r
0≤min(s1,...,sn−1)

1ds1 · · · dsn−1


 dr where r = s1 + · · ·+ sn

=

∫ t

0

e−r ·




∫
· · ·
∫

0<u1<···<un−1<r

1du1 · · · dun−1


 dr where uk=s1+···+sk

and k=1,...,n−1

=

∫ t

0

e−r · rn−1

(n− 1)!
dr (by the multiple integral identity). (A.2.7)

Theorem A.2.5 (Central Limit). If X1, . . . , Xn are i.i.d. random variables with

mean E[X1] = µ and V[X1] = σ2, then

lim
n→∞

P





n∑
i=1

Xi − µ
√
n · σ2

≤ x





=
1√
2π

∫ x

−∞
e−t

2/2dt. (A.2.8)
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Theorem A.2.6 (superposition). if {N1(t)|t ≥ 0} and {N2(t)|t ≥ 0} are Poisson

processes with rates µ and ν respectively, then there superposition {N1(t)+N2(t)|t ≥

0} is also a Poisson process with rate µ+ ν

Proof.

{N1(t) +N2(t) = k} = {N1(t) = j,N2(t) = k − j | 0 ≤ j ≤ k}

=
k⋃

j=0

{N1(t) = j} ∩ {N2(t) = k − j} . (A.2.9)

So we have

P {N1(t) +N2(t) = k} = P

(
k⋃

j=0

{N1(t) = j} ∩ {N2(t) = k − j}
)

=
k∑

j=0

P {N1(t) = j} · P {N2(t) = k − j}

=
k∑

j=0

e−µt · (µt)j
j!

· e
−νt · (νt)k−j

(k − j)!

=
e−(µ+ν)t

k!
·

k∑

j=0

k!

j! · (k − j)! ·
(
µt
)j ·
(
νt
)k−j

=
e−(µ+ν)t

k!
·

k∑

j=0

(
k

j

)
·
(
µt
)j ·
(
νt
)k−j

=
e−(µ+ν)t ·

(
(µ+ ν)t

)k

k!
. (A.2.10)

Steady State Analysis

Let Q1/K denote the queue length of the Mλ(t)/Mµ(t)/1/k queueing system in steady

state. And let Q1/∞ denote the queue length of the Mλ/Mµ/1/∞ queueing system in

steady state. Moreover define ρ = λ
µ
.
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Lemma A.2.7. The steady state, number of customers in an Mλ/Mµ/1/k queue is

distributed as a truncated Geometric(ρ, k) random variable. Setting ρ = λ
µ
, we then

have

lim
t→∞

P
{
Q1/k(t) = n

}
=





(1−ρ)·ρn
1−ρk+1 if ρ < 1

1
k+1

if ρ = 1

0 if ρ > 1.

(A.2.11)

Proof.

P
{
Q1/k = n

}
= P

{
Q1/∞ = n|Q1/∞ ≤ k

}

=
P
{
Q1/∞ = n,Q1/∞ ≤ k

}

P
{
Q1/∞ ≤ k

}

=
P
{
Q1/∞ = n

}

P
{
Q1/∞ ≤ k

}

=
(1− ρ) · ρn∑k
`=0(1− ρ) · ρ`

=
ρn∑k
`=0 ρ

`

=





(1−ρ)·ρn
1−ρk+1 if ρ < 1

1
k+1

if ρ = 1.

(A.2.12)

Lemma A.2.8. The steady state of Mλ/Mµ/1/∞ and Mλ/Mµ/1/k queues all have

a steady state distributions of the form:

π(m) =
αm · ρm
G(ρ)

where G(ρ) =
∞∑

`=0

α` · ρ` and α0 = 1. (A.2.13)
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Proof. For Mλ/Mµ/1/∞ queue, the steady state distribution is given by:

π(m) = (1− ρ)ρm · 1{ρ<1}. (A.2.14)

If we let αm = 1{ρ<1}, then the steady state can be rewritten as follows:

π(m) = (1− ρ)ρm · 1{ρ<1}

=
ρm · 1{ρ<1}

1
(1−ρ)

=
ρm · 1{ρ<1}
∞∑
k=0

1{ρ<1} · ρk

=
αm · ρm
G(ρ)

. (A.2.15)

Similarly, for Mλ/Mµ/1/k queue, the steady state distribution is given by:

π(m) =
(1− ρ) · ρm · 1{0≤m≤k}

1− ρk+1
. (A.2.16)

If we let αm = 1{0≤m≤k}, then the steady state can be rewritten as follows:

π(m) =
(1− ρ) · ρm · 1{0≤m≤k}

1− ρk+1

=
ρm · 1{0≤m≤k}

k∑
`=0

ρ`

=
ρm · 1{0≤m≤k}
∞∑
`=0

1{0≤m≤k} · ρ`

=
αm · ρm
G(ρ)

. (A.2.17)
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Lemma A.2.9. For the Mλ/Mµ/1/k and Mλ/Mµ/1/∞ queueing system, the steady

state queue length denoted by Q, we always have

E[Q] = EG(ρ), P{Q = 0} =
1

G(ρ)
, and Var[Q] = ρ

d

dρ
E[Q]. (A.2.18)

where we define the elasticity Ef(x) = xf ′(x)
f(x)

for a given differentiable, strictly positive

function f .

Proof.

E[Q] =
∞∑

m=0

m · P{Q = m}

=
∞∑

m=0

m · π(m)

=
∞∑

m=0

m · αm · ρm
G(ρ)

=

∞∑
m=1

m · αm · ρm

G(ρ)

=

ρ ·
∞∑
m=1

m · αm · ρm−1

G(ρ)

=

ρ · d
dρ

(
∞∑
m=1

αm · ρm
)

G(ρ)

=
ρ ·G′(ρ)

G(ρ)

= EG(ρ) (A.2.19)

Since the steady state distribution is given by

P{Q = m} =
αm · ρm
G(ρ)

, (A.2.20)
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and α0 = 1, we have

P{Q = 0} =
α0 · ρ0

G(ρ)

=
1

G(ρ)
. (A.2.21)

E[Q2] =
∞∑

m=0

m2 · P{Q = m}

=
∞∑

m=0

m2 · π(m)

=
∞∑

m=0

m2 · αm · ρm
G(ρ)

=
1

G(ρ)

∞∑

m=0

m2 · αm · ρm

=
ρ

G(ρ)

∞∑

m=1

m2 · αm · ρm−1

=
ρ

G(ρ)

∞∑

m=1

m · αm ·
d

dρ
ρm

=
ρ

G(ρ)
· d
dρ

(
∞∑

m=1

m · αm · ρ
m

G(ρ)
·G(ρ)

)

=
ρ

G(ρ)
· d
dρ

(
E[Q] ·G(ρ)

)

=
ρ

G(ρ)
·
(
d

dρ
E[Q] ·G(ρ) + E[Q] ·G′(ρ)

)

= ρ · d
dρ

E[Q] + E[Q]
ρ ·G′(ρ)

G(ρ)

= ρ · d
dρ

E[Q] + E[Q]2 (A.2.22)
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and

Var[Q] = E[Q2]− E[Q]2

= ρ · d
dρ

E[Q] + E[Q]2 − E[Q]2

= ρ · d
dρ

E[Q]. (A.2.23)

Lemma A.2.10. The steady state mean and variance for the number of customers

in the Mλ/Mµ/1/k queueing system are

E[Q1/k] =
ρ

1− ρ − (k + 1) · ρk+1

1− ρk+1
(A.2.24)

and

Var[Q1/k] =
ρ

(1− ρ)2
− (k + 1)2 · ρk+1

(1− ρk+1)2
. (A.2.25)

Moreover, we also have

P{Q1/k > 0} =
E[Q1/k]

1 + E[Q1/k−1]
(A.2.26)

and the mean response time for a customers who is successfully admitted into the

queue is

E[R1/k] =
1

µ
·
(

1− ρk+1

(1− ρ)(1− ρk) −
(k + 1) · ρk

1− ρk
)

(A.2.27)
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Proof. Using the result from Lemma A.2.9,

E[Q1/k] = EG(ρ)

=
ρ ·G′(ρ)

G(ρ)

=
ρ ·
(

1−ρk+1

1−ρ

)′

1−ρk+1

1−ρ

= ρ ·
(−(1− ρ)(k + 1)ρk + 1− ρk+1

(1− ρ)2

)
· 1− ρ

1− ρk+1

= ρ ·
(−(1− ρ)(k + 1)ρk + 1− ρk+1

(1− ρ)(1− ρk+1)

)

= ρ ·
(

1− ρk+1

(1− ρ)(1− ρk+1)
− (k + 1) · (1− ρ)ρk

(1− ρ)(1− ρk+1)

)

= ρ ·
(

1

1− ρ − (k + 1) · ρk

1− ρk+1

)

=
ρ

1− ρ − (k + 1) · ρk+1

1− ρk+1
(A.2.28)

Var[Q1/k] = ρ · d
dρ

E[Q1/k]

= ρ · d
dρ

(
ρ

1− ρ − (k + 1) · ρk+1

1− ρk+1

)

= ρ ·
(

1− ρ+ ρ

(1− ρ)2
− (k + 1) · (1− ρk+1)(k + 1)ρk + ρk+1(k + 1)ρk

(1− ρk+1)2

)

= ρ ·
(

1

(1− ρ)2
− (k + 1)2 · ρk

(1− ρk+1)2

)

=
ρ

(1− ρ)2
− (k + 1)2 · ρk+1

(1− ρk+1)2
(A.2.29)

Using the fact that

Q1/k = Q1/k · {Q1/k > 0}+Q1/k · {Q1/k = 0}, (A.2.30)
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and the fact that Markovian queueing models are time reversible

E[Q1/k] = E[Q1/k · {Q1/k > 0}] + E[Q1/k · {Q1/k = 0}]

= E[Q1/k|Q1/k > 0] · P{Q1/k > 0}+ E[Q1/k|Q1/k = 0] · P{Q1/k = 0}

= E[Q1/k|Q1/k > 0] · P{Q1/k > 0}+ 0 · P{Q1/k = 0}

= E[Q1/k|Q1/k ≥ 1] · P{Q1/k ≥ 1}

=
(
E[Q1/k − 1|Q1/k ≥ 1] + 1

)
· P{Q1/k > 0}

=
(
E[Q1/k−1] + 1

)
· P{Q1/k > 0}

(A.2.31)

therefore, we have

P{Q1/k > 0} =
E[Q1/k]

1 + E[Q1/k−1]
(A.2.32)

According to Little’s law Morse (1958) for steady state queueing, for any queueing

system in steady state, we have that the expected number of customers in the system

is the same as the effective input rate times the expected response time. In other

words we have the following averaged relation:

E[Q1/k] = α · E[R1/k] (A.2.33)
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So we have

E[R1/k] =
E[Q1/k]

α

=
E[Q1/k]

λ · P{Q1/k ≤ k}

=
E[Q1/k]

λ ·
(

1− P{Q1/k = k}
)

=
E[Q1/k]

λ ·
(

1−ρk
1−ρk+1

)

=
E[Q1/k]

λ
· 1− ρk+1

1− ρk

=
1

λ
·
(

ρ

1− ρ − (k + 1) · ρk+1

1− ρk+1

)
· 1− ρk+1

1− ρk

=
1

λ
·
(
ρ · (1− ρk+1)

(1− ρ)(1− ρk) −
(k + 1) · ρk+1

1− ρk
)

=
1

µ
·
(

1− ρk+1

(1− ρ)(1− ρk) −
(k + 1) · ρk

1− ρk
)
. (A.2.34)

Lemma A.2.11. The steady state, number of customers in an M/M/1/∞ queue is

a Geometric(ρ) random variable. Setting ρ = λ
µ
, we then have

lim
t→∞

P
{
Q1/∞(t) = m

}
=





(1− ρ) · ρm if ρ < 1

0 if ρ ≥ 1

(A.2.35)

Lemma A.2.12. The steady state mean and variance for the number of customers

in the Mλ/Mµ/1/∞ queueing system are

E
[
Q1/∞

]
=

ρ

1− ρ (A.2.36)
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and

V
[
Q1/∞

]
=

ρ

(1− ρ)2
. (A.2.37)

Proof.

E
[
Q1/∞

]
=
∞∑

n=0

n · P
{
Q1/∞ = n

}

=
∞∑

n=0

n · (1− ρ) · ρn

= ρ · (1− ρ) ·
∞∑

n=1

n · ρn−1

= ρ · (1− ρ) ·
∞∑

n=0

d

dρ
ρn

= ρ · (1− ρ) · d
dρ

(
∞∑

n=0

ρn

)

= ρ · (1− ρ) · d
dρ

(
1

1− ρ

)

= ρ · (1− ρ) · 1

(1− ρ)2

=
ρ

1− ρ (A.2.38)
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E
[
Q2

1/∞
]

=
∞∑

n=0

n2 · P
{
Q1/∞ = n

}

=
∞∑

n=0

n2 · (1− ρ) · ρn

=
∞∑

n=0

n(n+ 1) · (1− ρ) · ρn −
∞∑

n=0

n · (1− ρ) · ρn

= ρ · (1− ρ) ·
∞∑

n=1

n(n+ 1) · ρn−1 − ρ

1− ρ

= ρ · (1− ρ) · d
dρ

(
∞∑

n=1

(n+ 1) · ρn
)
− ρ

1− ρ

= ρ · (1− ρ) · d
dρ

(
∞∑

m=2

m · ρm−1

)
− ρ

1− ρ

= ρ · (1− ρ) · d
dρ

(
∞∑

m=1

m · ρm−1 − 1

)
− ρ

1− ρ

= ρ · (1− ρ) · d
dρ

(
1

(1− ρ)2
− 1

)
− ρ

1− ρ

= ρ · (1− ρ) ·
(

2

(1− ρ)3

)
− ρ

1− ρ

=
2ρ

(1− ρ)2
− ρ

1− ρ (A.2.39)

V
[
Q1/∞

]
= E

[
Q2

1/∞
]
− E

[
Q1/∞

]2

=
2ρ

(1− ρ)2
− ρ

1− ρ −
(

ρ

1− ρ

)2

=
ρ

(1− ρ)2
. (A.2.40)
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Lemma A.2.13. For Mλ/Mµ/1/∞ in steady state, we have the following geometric

distribution identity:

E[Q
(n)
1/∞] = n! ·

(
ρ

1− ρ

)n
(A.2.41)

Proof. By the definition of descending factorial, we have

x(n) = x(x− 1)(x− 2) · · · (x− n+ 1)

=
n−1∏

k=0

(x− k)

=
x!

(x− n)!

= n!

(
x

n

)
. (A.2.42)

We begin by showing

(x+ 1)(n) = x(n) + nx(n−1) (A.2.43)
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(x+ 1)(n) = n!

(
x+ 1

n

)

=
(x+ 1)!

(x+ 1− n)!

=
(x+ 1)x!

(x+ 1− n)!

=
(x+ 1− n+ n)x!

(x+ 1− n)!

=
(x+ 1− n)x! + nx!

(x+ 1− n)!

=
(x+ 1− n)x!

(x+ 1− n)(x− n)!
+

nx!

(x+ 1− n)!

=
x!

(x− n)!
+

nx!

(x+ 1− n)!

= n!

(
x

n

)
+ n

[
(n− 1)!

(
x

n− 1

)]

= x(n) + nx(n−1). (A.2.44)

Hence,

Q
(n)
1/∞ =

((
Q1/∞ − 1

)(n)

+ n
(
Q1/∞ − 1

)(n−1)
)
· 1{Q1/∞≥1} (A.2.45)

Taking expectation over both sides, we obtain the following equation:

E[Q
(n)
1/∞] = E

[((
Q1/∞ − 1

)(n)

+ n
(
Q1/∞ − 1

)(n−1)
)
· {Q1/∞ ≥ 1}

]

=
(
E
[(
Q1/∞ − 1

)(n)|Q1/∞ ≥ 1
]

+ E
[
n
(
Q1/∞ − 1

)(n−1)|Q1/∞ ≥ 1
])
· P{Q1/∞ ≥ 1}

=
(
E
[(
Q1/∞ − 1

)(n)|Q1/∞ ≥ 1
]

+ E
[
n
(
Q1/∞ − 1

)(n−1)|Q1/∞ ≥ 1
])
· ρ

=
(
E
[
Q

(n)
1/∞

]
+ nE

[
Q

(n−1)
1/∞

])
· ρ (A.2.46)

198



which implies that

E[Q
(n)
1/∞] =

(
n

ρ

1− ρ

)
· E[Q

(n−1)
1/∞ ]. (A.2.47)

In Equation A.2.46, we use the following memoryless property of the geometric

distribution:

P
{

(Q1/∞ − 1)+ = n|Q1/∞ ≥ 1
}

= P{Q1/∞ − 1 = n|Q1/∞ ≥ 1}

= P{Q1/∞ = n} (A.2.48)

hence, we can write

E
[(
Q1/∞ − 1

)(n)|Q1/∞ ≥ 1
]

=
∞∑

k=0

k(n) · P
{
Q1/∞ − 1 = k|Q1/∞ ≥ 1

}

=
∞∑

k=0

k(n) · P
{
Q1/∞ = k

}

= E
[
Q

(n)
1/∞

]
(A.2.49)

Finally, using recursion and the fact that in steady state Q1/∞ has geometric distri-

bution with rate ρ, we have

E[Q
(1)
1/∞] = E[Q1/∞]

=
ρ

1− ρ, (A.2.50)
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and

E[Q
(n)
1/∞] =

(
n

ρ

1− ρ

)
· E[Q

(n−1)
1/∞ ]

=

(
n

ρ

1− ρ

)
·
(

(n− 1)
ρ

1− ρ

)
· E[Q

(n−2)
1/∞ ]

=

(
n

ρ

1− ρ

)
·
(

(n− 1)
ρ

1− ρ

)
· · ·
(

2
ρ

1− ρ

)
· E[Q

(1)
1/∞]

= n! ·
(

ρ

1− ρ

)n−1

· E[Q1/∞]

= n! ·
(

ρ

1− ρ

)n−1

· ρ

1− ρ

= n! ·
(

ρ

1− ρ

)n
. (A.2.51)

Lemma A.2.14. A closed-form expression for pk(t,m), the transient probabilities

for the Mλ(t)/Mµ(t)/1/k queue, exists. This is a solution to the Kolmogorov forward

equations and its antiderivative exists.

Proof. The transient solution as shown in (Lajos, 1962; Morse, 1958) for the

Mλ(t)/Mµ(t)/1/k queue is as follows:

pm(t, n) =
(1− ρ) · ρn

1− ρk+1
+

2ρ
n−m

2

k + 1

k∑

j=1

e−(λ+µ)t+2t
√
λµ cos( πj

k+1)

1− 2 · √ρ cos
(
πj
k+1

)
+ ρ

·
(

sin

(
mjπ

k + 1

)
−√ρ sin

(
(m+ 1)jπ

k + 1

))

·
(

sin

(
njπ

k + 1

)
−√ρ sin

(
(n+ 1)jπ

k + 1

))
(A.2.52)
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for when λ 6= µ and

pm(t, n) =
1

k + 1
+

1

k + 1

k∑

j=1

e−(2λ)t+2tλ cos( πj
k+1)

1− cos
(
πj
k+1

)

·
(

sin

(
mjπ

k + 1

)
− sin

(
(m+ 1)jπ

k + 1

))

·
(

sin

(
njπ

k + 1

)
− sin

(
(n+ 1)jπ

k + 1

))
(A.2.53)

for when λ = µ. This expression satisfies the standard Chapman-Kolmogorov equa-

tions

pm(t+ s, n) = P
(
Q(t+ s) = n

∣∣∣∣Q(0) = m

)

=
N∑

`=0

P
(
Q(t+ s) = n

∣∣∣∣Q(t) = `,Q(0) = m

)
· P
(
Q(t) = `

∣∣∣∣Q(0) = m

)

=
N∑

`=0

P
(
Q(s) = n

∣∣∣∣Q(t) = `

)
· pm(t, `)

=
N∑

`=0

pm(t, `) · p`(s, n) (t > 0, s > 0). (A.2.54)

Hence pm(t, n) is a solution to the Kolmogorov forward equations. By integrating

pm(t, n) on the interval [0, T ], one obtains a closed-form expression of the integral,

i.e.

∫ T

0

pm(t, n)dt =
T · (1− ρ) · ρn

1− ρk+1

+
2ρ

n−m
2

k + 1

k∑

j=1

e−(λ+µ)t+2t
√
λµ cos( πj

k+1) − 1[
1− 2 · √ρ cos

(
πj
k+1

)
+ ρ
]
·
[
2
√
λµ cos

(
πj
k+1

)
− (λ+ µ)

]

·
(

sin

(
mjπ

k + 1

)
−√ρ sin

(
(m+ 1)jπ

k + 1

))

·
(

sin

(
njπ

k + 1

)
−√ρ sin

(
(n+ 1)jπ

k + 1

))
(A.2.55)
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for when λ 6= µ and

∫ T

0

pm(t, n)dt =
T

k + 1
+

1

k + 1

k∑

j=1

e−(2λ)t+2tλ cos( πj
k+1) − 1[

1− cos
(
πj
k+1

) ]
·
[
2λ cos

(
πj
K+1

)
− 2λ

]

·
(

sin

(
mjπ

k + 1

)
− sin

(
(m+ 1)jπ

k + 1

))

·
(

sin

(
njπ

k + 1

)
− sin

(
(m+ 1)jπ

k + 1

))
(A.2.56)

for when λ = µ.

Next, we derive the functional forward equations for the reflecting queue length

process and compute the expected time spent in a state. For convenience, we denote

the initial queue length by Q(0) = Q0.The functional version of the Kolmogorov

forward equations for the Mλ(t)/Mµ(t)/1/k queue length process for a bike-sharing

system has the following form:

•
E

[
f(Q)

∣∣∣∣ Q(0) = Q0

]
= µ(t) · E

[
(f(Q+ 1)− f(Q)) · {Q < k}

∣∣∣∣ Q(0) = Q0

]

− λ(t) · E
[
(f(Q− 1)− f(Q)) · {Q > 0}

∣∣∣∣ Q(0) = Q0

]

= µ(t) · EQ0 [(f(Q+ 1)− f(Q)) · {Q < k}]

− λ(t) · EQ0 [(f(Q− 1)− f(Q)) · {Q > 0}] , (A.2.57)

for all appropriate functions f . For special cases of f such as the mean and variance,

we can then obtain the following set of differential equations:

•
EQ0 [Q] = µ(t) · EQ0 [{Q < k}]− λ(t) · EQ0 [{Q > 0}]
•

VarQ0 [Q] = µ(t) · EQ0 [{Q < k}] + λ(t) · EQ0 [{Q > 0}]

+ 2 · µ(t) · CovQ0 [Q, {Q < k}]− 2 · λ(t)CovQ0 [Q, {Q > 0}] .
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Recall we define the transient probabilities of the Markov chain by

pm(t, n) ≡ P
(
Q(t) = n

∣∣∣∣Q(0) = m

)
. (A.2.58)

Moreover, the transient probabilities of the non-stationary model solve the following

Kolmogorov forward equations:

d

dt
pm(t, 0) = µ(t) · pm(t, 1)− λ(t) · pm(t, 0)

d

dt
pm(t, `) = µ(t) · pm(t, `+ 1) + λ(t) · pm(t, `− 1)−

(
λ(t) + µ(t)

)
· pm(t, `)

∀` ∈ {1, . . . , k − 1}
d

dt
pm(t, k) = λ(t) · pm(t, k − 1)− µ(t) · pm(t, k).

We now calculate the expected time spent in a state over a time interval [0, T ]

given that the queue length process started in the state Q0. We will show that this

is straight forward if we have an explicit solution to the transient probabilities.

Theorem A.2.15. The expected time spent in a state over the time interval [0, T ]

given that the queue length process started in the state Q0 is given by the following

formula

E
[∫ T

0

{
Q(t) = n

∣∣∣∣ Q(0) = m

}
dt

]
=

∫ T

0

pm(t, n)dt. (A.2.59)

Proof.

E
[∫ T

0

{
Q(t) = n

∣∣∣∣ Q(0) = m

}
dt

]
=

∫ T

0

E
[{

Q(t) = n

∣∣∣∣ Q(0) = m

}]
dt

=

∫ T

0

P
(
Q(t) = n

∣∣∣∣ Q(0) = m

)
dt

=

∫ T

0

pm(t, n)dt. (A.2.60)
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This completes the proof.

Theorem A.2.16. The expected time spent in a state over the time interval [0, T ]

given that the queue length process started in the state Q0 is given by the following

formula

∫ T

0

~pm(t)dt = A−1~pm(0)
(
eAT − I

)
. (A.2.61)

Proof.

∫ T

0

~pm(t)dt =

∫ T

0

~pm(0)eAtdt

= A−1~pm(0)
(
eAT − eA0

)

= A−1~pm(0)
(
eAT − I.

)
(A.2.62)

This completes the proof.

Theorem A.2.17. The variance of the time spent in a state over the time interval

[0, T ] given that the queue length process started in the state Q0 is given by the

following formula

Vm

[∫ T

0

{Q(t) = n } dt
]
≡ Var

[∫ T

0

{
Q(t) = n

∣∣∣∣ Q(0) = m

}
dt

]

= 2

∫ T

0

∫ t

0

pm(t− s, n) · pm(s, n)dsdt− E2
m,n(T ). (A.2.63)

where

Em,n(T ) , Em
[∫ T

0

{Q(t) = n} dt
]

≡ E
[∫ T

0

{
Q(t) = n

∣∣∣∣ Q(0) = m

}
dt

]
(A.2.64)
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Proof.

Vk

[∫ T

0

{Q(t) = n } dt
]

(A.2.65)

= Cov

[∫ T

0

{
Q(t) = n

∣∣∣∣ Q(0) = m

}
dt,

∫ T

0

{
Q(s) = n

∣∣∣∣ Q(0) = m

}
ds

]

= Em
[∫ T

0

{Q(t) = n} dt ·
∫ T

0

{Q(s) = n} ds
]

− Em
[∫ T

0

{Q(t) = n} dt
]
· Em

[∫ T

0

{Q(s) = n} ds
]

= E
[∫ T

0

∫ T

0

{Q(t) = n} · {Q(s) = n} dsdt
]
− E2

m,n(T )

= Em

(∫ T

0

∫ T

0

{
Q(t) = n

∣∣∣∣ Q(s) = n

}
·
{
Q(s) = n

}
)
− E2

m,n(T )

=

∫ T

0

∫ T

0

Em

[
{Q(t) = n}

]
· Ek

[
{Q(s) = n}

]
dsdt− E2

m,n(T )

= 2

∫ T

0

∫ t

0

pm(t− s, n) · pm(s, n)dsdt− E2
m,n(T ). (A.2.66)

This completes the proof.

Next, we will define the exponential of a matrix as the tailor series and derive

some useful properties of series representation.

Definition A.2.2. Define exp(tA) by the power series for all t ≥ 0

exp(tA) =
∞∑

n=0

tn

n!
An. (A.2.67)

For N large enough, exp(tA) can be approximated as follows:

exp(tA) =
∞∑

n=0

tn

n!
An

= lim
n→∞

[
I +

At

n

]n

≈
[
I +

At

N

]N
. (A.2.68)
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Lemma A.2.18. The power series representation has the following properties:

exp((s+ t)A) = exp(sA) · exp(tA)

and

d

dt
exp(tA) = A exp(tA).

Proof.

exp((s+ t)A) =
∞∑

n=0

(s+ t)n

n!
An

=
∞∑

n=0

(sA+ tA)n

n!

=
∞∑

n=0

1

n!

n∑

k=0

(
n

k

)
(tA)n−k(sA)k

=
∞∑

n=0

1

n!

n∑

k=0

n!

k!(n− k)!
(tA)n−k(sA)k

=
∞∑

n=0

n∑

k=0

sk

k!
Ak tn−k

(n− k)!
An−k

=
∞∑

k=0

∞∑

n=k

sk

k!
Ak tn−k

(n− k)!
An−k

=
∞∑

k=0

sk

k!
Ak

∞∑

n=k

tn−k

(n− k)!
An−k

= exp(sA) · exp(tA). (A.2.69)
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d

dt
exp(tA) =

d

dt

∞∑

n=0

tn

n!
An

=
∞∑

n=0

d

dt

tn

n!
An

=
∞∑

n=1

tn−1

(n− 1)!
An

= A ·
∞∑

n=1

tn−1

(n− 1)!
An−1

= A ·
∞∑

m=0

tm

m!
Am

= A · exp(tA). (A.2.70)

A.3 Inventory Repositioning Problem: The Rout-

ing Subroutine

The routing problen associated to inventory repositioning problem plans to mini-

mize the repositioning cost by planning cost-effective truck routes. This is equivalent

to solving a capacitated multi-vehicle routing problem with Pickups and Deliveries

(CVRPPD). The CVRPPD is known to be an NP-hard problem. The cost-effective

truck routes could be achieved by setting up a large scale multi-vehicle VRPPD.

However, for large scale problems, this has high combinatorial complexity. Instead

of solving multi-vehicle VRPPD, we will solve a series of single-vehicle VRPPD for

computational convenience. To accomplish this, we split the routing problem into

two phases: (1) In this phase, all the stations are spatially clustered into different

clusters. A cluster is a collection of data items that are similar between them and
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dissimilar to data items in other clusters; (2) In the second phase, we solve a single

single-vehicle VRPPD within each cluster.

Spatial clustering of stations: Spatial clustering is the process of grouping a set

of stations into clusters such that stations within a cluster have high similarity but

dissimilar to stations in other clusters. We use distance-based cluster analysis to

partition different stations. In particular, we will focus on the Euclidean distance

and great circle distance metric. The great-circle distance also known as geodesics

distance is the shortest distance between two points on the surface of a sphere. In

spaces with curvature, straight lines are replaced by geodesics. Geodesics on the

sphere are circles on the sphere whose centers coincide with the center of the sphere

and are called great circles. Whereas in Euclidean space, the distance between two

points is the length of a straight line between them.

Vehicle Routing within each Cluster: We now describe a mathematical model

for the VRPPD. VRPPD refers to problems where goods are transported from pickup

to delivery points. There are two classes: paired and unpaired. The paired subclass

considers transportation requests, each associated with an origin and a destination,

resulting in paired pickup and delivery points. Whereas in unpaired subclass, an

identical good is considered and each unit picked up could be used to fulfill the

demand of every delivery customer. The natural subclass we consider is the unpaired

and the mixed-integer linear programming (MILP) model formulations below adapted

from (Parragh et al., 2008; Kallehauge et al., 2006; Cordeau et al., 2002; Desaulniers

et al., 2002).
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Parameters Meaning

n The number of pickup vertices

ñ The number of delivery vertices

P The set of pickup vertices

D The set of delivery vertices

K The set of vehicles

qi

The demand/supply at vertex i: pickup vertices are associated with positive value,

delivery vertice with a negative value, excluding the deport node which

is always zero.

tij The travel time from vertex i to vertex j

Bi The load of vehicle at the begining of service at vertex i

Qi The load of vehicle when leaving vertex i

cij The cost to traverse arc (i, j)

Ck
The capacity of vehicle k. In the single vehicle problem,

the superscript k is omitted

Table A.2: The notation table for the vehicle routing problem

Define P = {1, 2, . . . , n} and D = {n + 1, 2, . . . , n + ñ} the set of pickup vertices

and delivery vertices respectively. Then VRPPD can be modeled on a complete

graph G = (V,A), where V = {0, n + ñ + 1} ∪ P ∪ D is the set of all vertices and

A = {(i, j)|i, j ∈ V ; i 6= j, i 6= n + ñ + 1, j 6= 0} the set of arcs. Define the decision

variables:

xij =





1 if arc (i, j) ∈ A is traversed

0 otherwise.

(A.3.1)

Let c be a positive semi-definited cost matrix, where the ith row and and ith column

of the matrix c[i][j] = cij represent the cost of going from node i to node j. So a

non-negative cost is associated with each arc (i, j) ∈ A. It is often convenient to
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assume the cost matrix satisfies the triangle inequality

cij ≤ cik + ckj ∀i, k, j ∈ V. (A.3.2)

This assumption discourages deviation from direct link between two vertices i and j.

The single-vehicle VRPPD model is as follows:

(S-VRPPD) min
xij

∑

(i,j)∈A

cijxij (A.3.3)

s.t.
∑

i:(i,j)∈A

xij = 1 ∀j ∈ V \{0}, (A.3.4)

∑

j:(i,j)∈A

xij = 1 ∀i ∈ V \{n+ ñ+ 1}, (A.3.5)

∑

(i,j)∈A(S,S̄)

xij ≥ 1 ∀S ⊆ V \{n+ ñ+ 1}, S 6= ∅, (A.3.6)

Qj ≥ (Qi + qi)xij i ∈ V, j ∈ V \{0}, (A.3.7)

Qj ≥ (Qi − qi)xij i ∈ V \{0}, j ∈ V, (A.3.8)

max{0, qi} ≤ Qi ≤ min{C,C + qi} ∀i ∈ V, (A.3.9)

xij ∈ {0, 1} ∀(i, j) ∈ A. (A.3.10)

The objective function (A.3.3) minimizes the total routing cost. The constraints

(A.3.4) and (A.3.5) impose that exactly one arc enters and leaves each vertex asso-

ciated with a customer, respectively except the deport. Constraints (A.3.6) ensures

route-connectivity and avoides subtours. subtour is also a round tour that returns

back to the origin without visiting all the vertices. This constraint ensures there is no

subtour by considering all subset of vertices and make sure that there is an arc leaving

a vertex in the subset and entering a vertex that is not in that subset. Constraints

(A.3.7) and (A.3.8) ensure that the flow conservation is modeled independent of the

sign of qi. Here it is implicitly assumed that every unit picked up can be used to
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satisfy every delivery customer’s demand. Constraints (A.3.9) simply give lower and

upper bounds on the loads. Lastly, constraint (A.3.10) are the integrality constraints.

Similarly, for the multi-vehicle pickup and delivery problem formulations, define

the decision variables:

xkij =





1 if arc (i, j) ∈ A is traversed by vehicle k

0 otherwise

(A.3.11)

(M-VRPPD) min
∑

k∈K

∑

(i,j)∈A

cijx
k
ij (A.3.12)

s.t.
∑

k∈K

∑

j:(i,j)∈A

xkij = 1 ∀i ∈ P ∪D, (A.3.13)

∑

j:(0,j)∈A

xk0j = 1 ∀k ∈ K, (A.3.14)

∑

i:(i,n+ñ+1)∈A

xkij = 1 ∀k ∈ K, (A.3.15)

∑

i:(i,j)∈A

xkij −
∑

i:(i,j)∈A

xkji = 0 ∀j ∈ P ∪D, k ∈ K, (A.3.16)

(Bk
j −Bk

i − di − tkij)xkij > 0 ∀(i, j) ∈ A, k ∈ K, (A.3.17)

Qk
j ≥ (Qk

i + qi)x
k
ij i ∈ V, j ∈ V \{0}, k ∈ K, (A.3.18)

Qk
j ≥ (Qk

i − qi)xkij i ∈ V \{0}, j ∈ V, k ∈ K, (A.3.19)

max{0, qi} ≤ Qk
i ≤ min{Ck, Ck + qi} ∀i ∈ V, (A.3.20)

xkij ∈ {0, 1} ∀(i, j) ∈ A. (A.3.21)

The objective function (A.3.12) minimizes the total routing cost. The constraints

(A.3.13) impose that every vertex has to be served exactly once. The constraints

(A.3.14) and (A.3.15) ensure that every vehicle starts at the deport in the begining

of the route and every vehicle ends at the deport at the end of the route. Constraint
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(A.3.16) provides flow conservation. Constraint (A.3.17) eliminates subtours by in-

troducing time variables and ensures route connectivity. Constraints (A.3.18) and

(A.3.19) ensure that the flow conservation is modeled independent of the sign of qi.

Constraint (A.3.18), (A.3.19), and (A.3.20) impose capacity restrain; a vehicle capac-

ity is not exceed thoughout it’s tours. Lastly, constraint (A.3.21) is the integrality

constraint.

Solution Techniques to The Routing Problem

One solution is to split the routing problem into two phases: clustering and routing

phase. In the clustering phase, all the stations are spatially clustered into different

clusters. Whereas in the routing phase, we solve a single single-vehicle VRPPD within

each cluster.

Spatial Clustering Clustering is an unsupervised learning technique used to find

structure, in this case, clusters in the unlabeled dataset. We perform spacial cluster-

ing of stations using two popular clustering techniques. The first clustering technique

is popularly known as the k-means clustering algorithm The k-means algorithm par-

titions the given data into k clusters, where k is prespecified by the user (Lloyd,

1957; 1982; MacQueen, 1967). And the second clustering technique is known as the

density-based spatial clustering of applications with noise (DBSCAN). DBSCAN is

a non-parametric algorithm that works as follows: given a set of points, it groups

together points that are closely packed together into a cluster, marking as outliers

points that lie alone in low-density regions (Singh and Meshram, 2017; Ester et al.,

1996).

Distance metrics play a very important role in the clustering process. The k-means

clustering algorithm uses the Euclidean distance metric. The Euclidean distance as-

sumes a flat geometry surface and simply takes the straight-line distance between

two points represented as (latitude, longitude) in the Euclidean space. For the DB-
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SCAN clustering, we use the great circle distance metric. The great-circle distance

also known as the orthodromic distance is the shortest distance between two points

on the surface of a sphere, measured along the surface of the sphere. Since the bicycle

stations are on Earth, It is also useful to try a distance metric that doesn’t assume

flat geometry. Below are the two distance metrics in two dimensions: The Euclidean

distance is given by

d(xi, xj) =

√(
x

(1)
i − x(1)

j

)2

+
(
x

(2)
i − x(2)

j

)2

(A.3.22)

and the great circle distance is given by

d(xi, xj) = R · cos−1
[
cos
(
x

(1)
i

)
cos
(
x

(1)
j

)
cos
(
x

(2)
i − x(2)

j

)
+ sin

(
x

(1)
i

)
sin
(
x

(1)
j

)]

(A.3.23)

where R is the radius of the sphere (or equatorial radius).

In-cluster Routing A popular algorithm for the vehicle routing problem is the

local search heuristic. The local search heuristic algorithms search the space of can-

didate solutions by applying local changes until a solution deemed optimal is found

or a time budget is exhausted Angel (2006). Some of the advantages of Local search

heuristics include running as many iterations as the budget allows. Moreover, the

algorithm could be stopped at any point and always have a complete solution but not

necessarily optimal. However, the downside of local search heuristics is that it is very

sensitive to the starting point. If the starting point is very bad, it might take a large

number of iterations to get to a good solution. In practice, one approach to remedy

this limitation is to start with a greedy solution rather than just a random solution.

For a survey on the local search heuristics and other heuristics for the vehicle routing

problems see (Angel, 2006; Laporte et al., 2000). Next, we look at clustering results

using real data from two bike-sharing systems: CitiBike and DivvyBike.
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DivvyBike Description. The DivvyBike is Chicagoland’s bike share system and

the second largest in the United States of America. The DivvyBike launched in June

2013 and has become an essential part of the transportation network in Chicago and

Evanston. DivvyBike, like other bike share systems, consists of a fleet of specially

designed, sturdy and durable bikes that are locked into a network of docking stations

throughout the region. The DivvyBike clients can unlock a bike from one station and

returned to any other station in the system. The DivvyBike provides residents and

visitors with a convenient, fun and affordable transportation option for commuting

and exploring Chicago. Also, data provided by Chicago Divybike, for 585 stations

that were active in the month of July 2017 Motivate International (b).

CitiBike Description. The CitiBike is the New York City’s bike share system, and

the largest in the United States of America. The CitiBike launched in May 2013 and

has become an essential part of the transportation network in New York. CitiBike,

like other bike share systems, consists of a fleet of specially designed, sturdy and

durable bikes that are locked into a network of docking stations throughout the city.

The CitiBike’s clients can unlock a bike from one station and returned to any other

station in the system. The CitiBike provides residents and visitors with a convenient,

fun and affordable transportation option for commuting and exploring New York City.

We use station data provided by NYC Citibike, for 623 stations that were active in

the month of July 2017 Motivate International (a).
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Figure A.9: The user count by hour of the day (CitiBike)

We show the plots for the performance metric objective function J(m), in the

non-constant rate setting in Figure A.10 using approximated rate from a realization

of an actual bike-sharing station data. We estimated the arrival rates λ(t) from the

average weekdays’ demand rate from the NYC Citibike data. Figure A.9, shows

the arrival distribution for both the weekdays and the weekend using the averaged

data from the CitiBike Dataset. Since the raw λ(t) values are very high, we further

normalized them by the average value for all t ∈ [0, 24] and use one hour increment

for the time step. Moreover, the station capacity k = 30; also the penalty charge for

each customer lost due to a shortage of bicycles and docks is the same πe = πf = 1.
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(a) Symmetric rates: λ(t) ≡ µ(t)
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(b) Non-symmetric rates: λ(t) = µ(t) + 0.2

0 4 8 12 16 20 24 28

Q0

0

1

2

3

4

5

6

7

8

P
en

al
ty

Total penalty

Shortage of bikes

Shortage of docks

Opt. Level

(c) Non-symmetric rates: λ(t) = µ(t)− 0.4

Figure A.10: The plot of different penalties incurred due to lost demands at a single

station. In (a), the optimal objective value is 0.139, which was achieved at Q∗0 = 15.

In (b), the optimal objective value is 0.196, which was achieved at Q∗0 = 11. In (c),

the optimal objective value is 0.284, which was achieved at Q∗0 = 23.
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(a) (b) (c) (d)

Figure A.11: Spatial clusters of the Citibike (New York City) stations using non-

parametric k-means cluster with Euclidean distance metric. In (a), there are k = 2

clusters. In (b), there are k = 3 clusters. In (c), there are k = 4 clusters. In (d),

there are k = 5 clusters.
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(a) (b) (c) (d)

Figure A.12: Spatial clusters of the Divvybike (Chicago) stations using non-

parametric k-means cluster with Euclidean distance metric. In (a), there are k = 2

clusters. In (b), there are k = 3 clusters. In (c), there are k = 4 clusters. In (d),

there are k = 5 clusters.

Figures A.11 and A.12 show the spatial cluster of stations using the non-

parametric k-means clustering with Euclidean distance metric with different cluster

sizes k. The k-means does not appear to properly cluster the Citibike stations. For

example, when k = 2, there are two natural clusters for the stations given by the

river line, but k-means did not capture this. However, the k-means did a great

job clustering the Divvybike stations into different clusters. The differences in the

performance of the k-means for both Citibike stations and Divvybike stations could

be explained by the geographical difference between New York and Chicago. More-

over, the Euclidean distance used in k-means assumes a flat geometry surface and

simply takes the straight-line distance between two points represented as (latitude,

longitude) in the Euclidean space.
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Figure A.13: The Elbow curve for k-means clustering Citibike (New York City):

calculates the within-cluster sum of squared Error (WSSE) for different values of k.
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Figure A.14: The Elbow curve for k-means clustering Divvybike (Chicago): calculates

the within-cluster sum of squared Error (WSSE) for different values of k.

In Figures A.13 and A.14, we show the Elbow method. The Elbow method is one of

the most popular methods to determine this optimal value of k. This is a fundamental

step for the unsupervised k-means algorithm to help determine the optimal number

of clusters into which the data may be clustered. The Elbow method interprets and

validates the consistency of the within-cluster analysis by looking at the percentage

of variance explained as a function of the number of clusters (the within-cluster sum
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of Squared Error (WSSE) for different values of k). Typically one chooses a number

of clusters so that adding another cluster doesnt give much better modeling of the

data.

(a) (b) (c) (d)

Figure A.15: Spatial clusters of the Citibike (New York City) stations using Density-

based spatial clustering of applications with noise (DBSCAN). Along with the great-

circle metric distance metric. In (a) all clusters are stations that have at least 5

neighbors in 800 meters. In (b) all clusters are stations that have at least 10 neighbors

in 650 meters. In (c) all clusters are stations that have at least 10 neighbors in 600

meters. And in (d) all clusters are stations that have at least 8 neighbors in 500

meters.
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(a) (b) (c) (d)

Figure A.16: Spatial clusters of the Divvybike (Chicago) stations using Density-based

spatial clustering of applications with noise (DBSCAN). Along with the great-circle

metric distance metric. In (a) all clusters are stations that have at least 4 neighbors

in 950 meters. In (b) all clusters are stations that have at least 5 neighbors in 1000

meters. In (c) all clusters are stations that have at least 7 neighbors in 800 meters.

And in (d) all clusters are stations that have at least 5 neighbors in 650 meters.

Figures A.15 and A.16 show the spatial cluster of stations using the using Density-

based spatial clustering of applications with noise (DBSCAN). With the great-circle

metric distance metric. The DBSCAN does not appear to properly cluster the Divvy-

bike stations. For example, DBSCAN tends to find one huge cluster in the Divvybike

stations dataset. But on the other hand, The DBSCAN did a great job clustering the

Citibike stations into different clusters. For example, when k = 2, the two natural

clusters in the Citibike stations dataset given by the river, were properly captured.

Again the differences in the performance of the DBSCAN algorithm for both Citibike

stations and Divvybike stations could be explained by the geographical difference

between New York and Chicago. Moreover, the great-circle metric distance metric

used in the DBSCAN algorithm does not assume a flat geometry surface. It takes the
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shortest distance between two points represented as (latitude, longitude) along the

surface of the sphere, which makes perfect sense for the bicycle stations application

measured along the Earth surface.
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Appendix B

Appendix to Chapter 3

B.1 Technical Lemmas

Lemma B.1.1 (Markov’s Inequality). Suppose that Z has a finite mean and that

P(Z ≥ 0) = 1. Then for any ε > 0,

P(Z > ε) ≤ E(Z)

ε

Proof.

E(Z) =

∫ ∞

0

z dP (z)

≥
∫ ∞

ε

z dP (z)

≥ ε

∫ ∞

ε

dP (z)

≥ P(z > ε)

Lemma B.1.2 (Chebyshev’s Inequality). Suppose that Z has a finite mean µ = E(Z)

and variance σ2 = V(Z). Then for any ε > 0,
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P
{
|Z − µ| > ε

}
≤ σ2

ε2

Proof.

P
{
|Z − µ| > ε

}
= P

{
|Z − µ|2 > ε2

}

≤ E(Z − u)2

ε2
(By Markov’s Inequality)

=
σ2

ε2

Lemma B.1.3. Suppose that a random variable Z has mean µ such that a ≤ Z ≤ b.

Then for any t

E(etZ) ≤ e
tµ+t2(b−a)2

8

Proof. Assume µ = 0. Pick α = Z−a
b−a then we can write Z as a convex combination

of a and b. Z = αb+ (1− α)a

etZ = et
(
αb+(1−α)a

)

≤ αetb + (1− α)eta (By convexity)

=
Z − a
b− a e

tb +
b− Z
b− a e

ta

Taking expectation of both sides implies
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E
[
etZ
]
≤ E

[
Z − a
b− a e

tb +
b− Z
b− a e

ta

]

= − a

b− ae
tb +

b

b− ae
ta

= eh(w)

where h(w) = −ξw + log(1 − ξ + ξew), w = t(b − a) and ξ = − a
b−a . There exist

γ ∈ (0, w) such that

g(w) = g(0) + wg′(0) +
w2

2
g′′(γ)

=
w2

2
g′′(γ)

(
g(0) = g′(0) = 0

)

≤ w2

8

(
g′′(w) ≤ 1

4
, ∀w > 0

)

=
t2(b− a)2

8

The conclusion follows from taking expectation of the last equation.

Theorem B.1.4 (Hoeffding). If Z1, Z2, . . . , Zn are independent with P(a ≤ Zi ≤

b) = 1 and common mean µ then for any t > 0

P
{
|Z̄n − µ| > ε

}
≤ 2e

−2nε2

(b−a)2

where Z̄n = 1
n

n∑
i=1

Zi.

Proof. Assume E(Zi) = 0. For any t > 0, we have
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P
{ 1

n

n∑

i=1

Zi ≥ ε
}

= P
{ t
n

n∑

i=1

Zi ≥ tε
}

= P
{
e
t
n

∑n
i=1 Zi ≥ etε

}

= e−tεE
[
e
t
n

n∑
i=1

Zi
]

(By Markov’s Inequality)

= e−tε
n∏

i=1

E
[
e
t
n
Zi
]

≤ e−tεe
t2

n2

n∑
i=1

(bi−ai)
2

8 (By Lemma B.1.3 )

= e
−2nε2

c

(
setting t =

4εn2

n∑
i=1

(bi − ai)2

)

Also, by similar argument, P
{
− 1

n

∑n
i=1 Zi ≥ ε

}
≤ e

−2nε2

c

Lemma B.1.5. Positive linear combination of n convex functions is convex.

Proof. Given n convex functions
{
fi : Ω→ R

}n
i=1

, then for all x,y in Ω and λ ∈ (0, 1),

we have

n∑

i=1

fi
(
λy + (1− λ)x

)
≤ λ

n∑

i=1

fi(x) + (1− λ)
n∑

i=1

fi(y)

Lemma B.1.6. Let J : Ω → R be continuously differentiable. J convex implies

J(y)− J(x) ≥ ∇J(x)>(y − x) for all x,y in Ω.

Proof. J convex for all x,y in Ω and λ ∈ (0, 1)

J
(
λy + (1− λ)x

)
≤ λJ(y) + (1− λ)J(x)

≤ λ
[
J(y)− J(x)

]
+ J(x)
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Which implies

J(x+ λ(y − x))− J(x) ≤ λJ(y) + (1− λ)J(x)

≤ λ
[
J(y)− J(x)

]

Which implies

J(x+ λ(y − x))− J(x)

λ
≤
[
J(y)− J(x)

]

which implies

lim
λ(y−x)→0

[J(x+ λ(y − x))− J(x)

λ(y − x)

]
(y − x) ≤

[
J(y)− J(x)

]

Which implies

∇J(x)>(y − x) ≤
[
J(y)− J(x)

]
.

Hence J(y) ≥ J(x)∇J(x)>(y − x)

Lemma B.1.7. If the function J(x) has L-Lipschitz continuous gradient then

||∇J(x)|| ≤ L for all x

Proof. Since J has lipschitz continuous gradient,

||∇J(y)−∇J(x)|| ≤ L||y − x|| ∀ x, y ∈ Rn.

This implies

||∇J(y)−∇J(x)

y − x || ≤ L ∀ x, y ∈ Rn,
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and

lim
y→x
||∇J(y)−∇J(x)

y − x || ≤ L ∀ x, y ∈ Rn.

Hence

||∇2J(x)|| ≤ L ∀ x ∈ Rn.

Theorem B.1.8. Gradient descent with fixed step size α ≥ 1
L

satisfies

Jπ(θ(k))− Jπ(θ?) ≤ ||θ
(k) − θ?||
2αk

Proof. Since J convex then Let J : Ω→ R be continuously differentiable and convex

implies J(y)−J(x) ≥ ∇J(x)>(y−x) for all x,y in Ω. Since the gradient is Lipschitz.
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By tailor expansion, we have

J(θ(k+1)) ≈ J(θ(k)) +∇J(θ(k))>(θ(k+1) − θ(k)) +
∇2J(θ(k))

2
||θ(k+1) − θ(k)||2

≤ J(θ(k)) +∇J(θ(k))>(θ(k+1) − θ(k)) +
L

2
||θ(k+1) − θ(k)||2

≤ J(θ(k))− α(1 +
αL

2
)||∇J(θ(k))||2 (plug in θ(k+1) = θ(k) − α∇J(θ(k)))

≤ J(θ?)−∇J(θ(k))>(θ? − θ(k))− α(1 +
αL

2
)||∇J(θ(k))||2 (J convex)

≤ J(θ?) +∇J(θ(k))>(θ(k) − θ?)− α

2
||∇J(θ(k))||2, (1 +

αL

2
) >

1

2

≤ J(θ?) +∇J(θ(k))>(θ(k) − θ?)− α

2
||∇J(θ(k))||2 +

1

2α
(||θ(k) − θ?||2 − ||θ(k) − θ?||2)

≤
J(θ?) +

1

2α
||θ(k) − θ?||2 − 1

2α

[
− 2α∇J(θ(k))>(θ(k) − θ?) + α2||∇J(θ(k))||2

+ ||θ(k) − θ?||2
]

≤ J(θ?) +
1

2α
||θ(k) − θ?||2 − 1

2α

[
|| − α∇J(θ(k)) + (θ(k) − θ?)||2

]

≤ J(θ?) +
1

2α
||θ(k) − θ?||2 − 1

2α

[
||(θ(k) − α∇J(θ(k)))− θ?||2

]

≤ J(θ?) +
1

2α

[
||θ(k) − θ?||2 − ||θ(k+1) − θ?||2

]

Summing over iterations

k∑

i=1

(
J(θ(i))− J(θ?)

)
≤ 1

2α

(
||x(0) − θ?||2 − ||θ(k) − θ?||2

)

≤ 1

2α
||θ(0) − θ?||2

Since J(θ(k)) is nonincreasing, we have
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J(θ(k))− J(θ?) ≤ 1

k

k∑

i=1

(
J(θ(i))− J(θ?)

)

≤ 1

2αk

(
||θ(0) − θ?||2 − ||θ(k) − θ?||2

)

≤ 1

2αk
||θ(0) − θ?||2

Suppose that H is a finite hypothesis space. Let
{

(x(i), y(i))
}m
i=1

denote the train-

ing sample set, define the training error as R̂n(h) = 1
n

n∑
i=1

1{y(i) 6= h(x(i))} and the

true classification error as R(h) = P(Y 6= h(X)). Assume that through empirical

risk minimization, there exist ĥ ∈ H that attains R̂(ĥ) = inf
h∈H

R̂(h), since |Y| < ∞.

In addition, let R? = inf
h∈M

R(h) be the Bayes risk, where M = {h | h : X →

Y (measurable function)}. And let RH = inf
h∈H

R(h) be the optimal performance

within the class H. Further assume that a hypothesis ĥ minimizes the empirical risk

R̂(ĥ) ≤ R̂(h), ∀h ∈ H. Then the difference between a hypothesis risk and the Bayes

risk is as follows:

R(h)−R? = R(h)− R̂(h)︸ ︷︷ ︸
I

+R(ĥ)−RH︸ ︷︷ ︸
II

+RH −R?

︸ ︷︷ ︸
III

,

where

• Optimization error (I): measures how good the optimization that led to the

hypothesis h is compared to the empirical risk minimization.

• Estimation error (II): measures how well the empirical risk minimizer ĥ per-

forms compare to the true risk minimizer in the hypothesis class.

• Approximation error (III): measures how well the hypothesis class H is suited

for the problem under consideration.
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We are interested in bounding the estimation error, which is often referred to as

the generalization bound. The generalization bound quantifies how well the chosen

hypothesis generalizes from the observed dataset to the unobserved dataset.

R(ĥ)−RH = R(ĥ)− inf
h∈H

R(h)− R̂(ĥ) + R̂(ĥ)

= R(ĥ)− R̂(ĥ)− inf
h∈H

[
R(h) + R̂(ĥ)

]

= R(ĥ)− R̂(ĥ) + sup
h∈H

[
R̂(ĥ)−R(h)

]

≤ 2 sup
h∈H

[
R̂(h)−R(h)

]

P
{

sup
h∈H
|R(h)− R̂(h)| > ε

}
= P

{ ⋃

h∈H

|R(h)− R̂(h)| > ε
}

≤
∑

h∈H

P
{
|R(h)− R̂(h)| > ε

}
(Union Bound)

≤ 2|H| exp(−2mε2) (Hoeffding’s Inequality)

|H| is the size of the hypothesis space. Set δ = 2|H| exp(−2mε2), then

ε =

√

−
log( δ

2|H|)

2m

=

√
log(2|H|

δ
)

2m

=

√
log(2

δ
)− log(|H|)

2m

So the generalization error is bounded by the training error plus a log function of

the size of the hypothesis class and the size of the dataset. From this bound, we see

that big hypothesis space will lead to big generalization error.
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Lemma B.1.9. The logistic regression cost function J(θ) is convex,

J(θ) = − 1

m

m∑

i=1

[
y(i) log hθ(x

(i)) + (1− y(i)) log[1− hθ(x(i))]
]

(B.1.1)

Proof. The convexity of the logistic cost function can also be justified mathematically.

To show that the objective function J(θ) is a convex function of θ, it suffices to show

that − log
(
hθ(x)

)
and − log[1 − hθ(x)] are convex. Then conclude with the fact

that linear combination of convex functions is convex. We begin by first rewriting

− log
(
hθ(x)

)
,

− log
(
hθ(x)

)
= − log

1

1 + e−θ>x

= log
(
1 + e−θ

>x
)
.

Taking the gradient

∇θ

[
− log

(
hθ(x)

)]
= ∇θ

[
log
(
1 + e−θ

>x
)]

=
( −e−θ>x

1 + e−θ>x

)
x

=
( 1

1 + e−θ>x
− 1
)
x

= (hθ(x)− 1)x, (B.1.2)
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and the Hessian

∇2
θ

[
− log

(
hθ(x)

)]
= ∇θ

[
∇θ

[
− log

(
hθ(x)

)]]

= ∇θ

[
(hθ(x)− 1)x

]

=
[ e−θ

>x

(1 + e−θ>x)2

]
xx>

=
[1 + e−θ

>x − 1

(1 + e−θ>x)2

]
xx>

=
[ 1 + e−θ

>x

(1 + e−θ>x)2
− 1

(1 + e−θ>x)2

]
xx>

=
[ 1

(1 + e−θ>x)
− 1

(1 + e−θ>x)2

]
xx>

=
[ 1

(1 + e−θ>x)
−
( 1

1 + e−θ>x
)2
]
xx>

=
[
hθ(x)−

(
hθ(x)

)2
]
xx>

= hθ(x)
[
1− hθ(x)

]
xx>. (B.1.3)

Similarly, we rewrite − log[1− hθ(x)],

− log
(
1− hθ(x)

)
= − log

[
1− 1

1 + e−θ>x

]

= − log
[ e−θ

>x

1 + e−θ>x

]

= θ>x+ log
(
1 + e−θ

>x
)
.

So the gradient is given by

∇θ

[
− log

(
1− hθ(x)

)]
= ∇θ

[
θ>x+ log

(
1 + e−θ

>x
)]

= x+∇θ

[
log
(
1 + e−θ

>x
)]

= x+ (hθ(x)− 1)x (by B.1.2),
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and the Hessian

∇2
θ

[
− log

(
1− hθ(x)

)]
= ∇θ

[
∇θ

[
− log

(
1− hθ(x)

)]]

= ∇θ

[
x+ (hθ(x)− 1)x

]
(B.1.4)

= ∇θ

[
(hθ(x)− 1)x

]

= hθ(x)
[
1− hθ(x)

]
xx> (by B.1.3).

Next we show that is Hessian is positive semi-definite. For all y we have

y>∇2
θ

[
− log

(
hθ(x)

)]
y = y>

[
hθ(x)

[
1− hθ(x)

]
xx>

]
y

= hθ(x)
[
1− hθ(x)

]
y>xx>y (B.1.5)

= hθ(x)
[
1− hθ(x)

]
(y>x)2

≥ 0.

Clearly equations B.1.3 and B.1.4 are positive semi-definite as shown in equation

B.1.5. Therefore result follows by the second-order condition for convexity and the

fact that positive linear combination of convex functions is convex (see Lemma B.1.5

in the Appendix).

B.2 Overview of Supervised Learning

In this section, we briefly introduce regression and classification which are two major

components of supervised machine learning.
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Regression: We briefly introduce a popular supervised learning algorithm for

linear regression. Let D =
{

(x(i), y(i))
}m
i=1

denote the training sample set. Where

m : is the number of training samples.

x(i) : is the input variable (feature).

y(i) : is the output variable (target).

We call the learning problem a regression problem, when the target variable is contin-

uous. Given the training sample, we wish to design a learning algorithm that takes as

an input the training samples and outputs a hypothesis function hθ(·). In other words

we want to learn a function hθ : X → Y such that hθ
(
x(i)
)
≈ y(i). For example, when

the relationship between the feature and the target is assumed to be linear, then the

hypothesis function is given by hθ(x) = θ>x. Where θ is the parameter vector of the

hypothesis function. We denote the loss by L
(
hθ
(
x(i)
)
, y(i)

)
, which measures the

cost incurred for incorrect prediction. The total cost for lost over our entire training

dataset D =
{

(x(i), y(i))
}m
i=1

is given by the cost function

J(θ) =
1

m

m∑

i=1

L
(
hθ
(
x(i)
)
, y(i)

)
(B.2.1)

For regression problem it is common to use the mean squared error cost function

L
(
hθ
(
x(i)
)
, y(i)

)
=
(
hθ
(
x(i)
)
− y(i)

)2

(B.2.2)
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The goal is to find the value of θ? ∈ Θ that minimizes the regression cost function.

θ? ∈ argmin
θ∈Θ

J(θ)

= argmin
θ∈Θ

1

m

m∑

i=1

L
(
hθ
(
x(i)
)
, y(i)

)

= argmin
θ∈Θ

1

2m

m∑

i=1

(
hθ
(
x(i)
)
− y(i)

)2

. (B.2.3)

This problem then become least square problem, where we need to optimally choose

the hypothesis parameter θ ∈ Θ. The idea is to choose hypothesis parameter θ

such the hθ(x) is close to y in our training example without either overfitting or

underfitting. One way to choose θ that minimizes the cost function is via gradient

descent (GD) as shown in Algorithm 7.

Algorithm 7: Steepest Gradient Descent Algorithm for Linear Regression

Input: Arbitrarily initialize θk for k=0, step size α > 0, integer T > 0 and
sample (x,y) ∼ D

Output: Weight vector θ̄ that performs best on the validation set.

for k = 1, 2, . . . , T do
1 Update the weight: θ(k+1) = θ(k) − α∇J(θ(k))

2 Set k = k + 1 and return to step 1.

end

3 θ̄ =
T∑
k=1

θ(k)

It is important to note that Algorithm 7 automatically takes smaller steps as

it approaches local minimum. In practice, GD algorithm requires hyperparameter

tuning for better performance. Often feature scaling and mean normalization are

employed for better performance of GD algorithm. The idea of feature scaling is to

make features look similar to each other by appropriately rescaling them. Whereas

mean normalization corrects the values by subtracting the mean and normalizing by
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the range or the standard deviation. Practically, given large enough dataset, GD tends

to work well although it is susceptible to local minimum. The typical complexity of

the a standard GD algorithm is O(km2).

Normal equations method is another common way of choosing the parameter θ

that minimizes the cost function. This method does not require choosing a learning

rate. In addition, feature scaling is not necessary. For this method, it is convenient

to rewrite cost function in vector notation:

J(θ) =
1

2m

m∑

i=1

(
hθ
(
x(i)
)
− y(i)

)2

=
1

2m

m∑

i=1

(
θ>x(i) − y(i)

)2

=
1

2m
(y −X>θ)>(y −X>θ), (B.2.4)

where

X =




−
(
x(1)
)>−

...

−
(
x(m)

)>−



∈ Rm×n, and y =




y(1)

...

y(m)



∈ Rm.

Then by the first order conditions of optimality, we have that

θ̂ = argmin
θ∈Θ

J(θ)

= (X>X)−IX>y. (B.2.5)

The normal equation approach works well for small data set and it’s complexity is

O(m3), which is incurred when calculating the inverse (X>X)−I .
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Classification: We briefly introduce a popular supervised learning algorithm for

classification. Let D =
{

(x(i), y(i))
}m
i=1

denote the training sample set. Where

m : is the number of training samples

x(i) : is the input variable (feature)

y(i) : is the output variable (target)

We call the learning problem a classification problem, when the target variable,

that we trying to predict, can only take small number of discrete values. For simplicity

we will start with binary classification problem. Similar to regression, we want to find

a mapping hθ : X → Y , such that h(x) is close to y. We modify the representation

of our regression hypothesis function as follows hθ(x) = g(θTx) where g(z) = 1
1+e−z

is the logistic function. It is clear that hθ(x) ≤ is bounded in the unit interval, but

we want just the binary values. So we further define the decision boundary. This is

how to translate the continuous output of our hypothesis to strictly binary values.

We design our classifier to predict:

y =





1 if hθ(x) ≥ 0.5

0 if hθ(x) < 0.5

. (B.2.6)

Since hθ(x) = g(θTx) implies that hθ(x) ≥ 0.5 if θTx ≥ 0. The decision boundary

basically separates the area where y = 0 from the area where y = 1. So we can inter-

pret the output of our hypothesis as a probability hθ(x) := P(y = 1|x;θ), estimate of

the probability that y = 1. Thus the conditional likelihood function for this logistic

regression has Bernoulli distribution:
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L(θ) =
m∏

i=1

P
{
Y = y(i)|X = x(i)

}

=
m∏

i=1

hθ
(
x(i)
)y(i)

[1− hθ
(
x(i)
)
]1−y

(i)

. (B.2.7)

And the log likelihood then becomes:

`(θ) = logL(θ)

= log
m∏

i=1

hθ
(
x(i)
)y(i)

[1− hθ
(
x(i)
)
]1−y

(i)

=
m∑

i=1

y(i) log hθ
(
x(i)
)

+ (1− y(i)) log
[
1− hθ

(
x(i)
)]
. (B.2.8)

Next we define the logistic regression cost function, also known as the cross entropy

loss, from the log likelihood function above:

J(θ) =
1

m

m∑

i=1

L
(
hθ
(
x(i)
)
, y(i)

)

= − 1

m

m∑

i=1

[
y(i) log hθ

(
x(i)
)

+ (1− y(i)) log
[
1− hθ

(
x(i)
)] ]

, (B.2.9)

where

L(hθ(x), y) =





− log
(
hθ(x)

)
if y = 1

− log[1− hθ(x)] if y = 0

= −y log
(
hθ(x)

)
− (1− y) log

[
1− hθ(x)

]
. (B.2.10)

This cost function maintains convexity and penalizes our algorithm for wrong

prediction. So that during optimization GD will be guaranteed to converge to the
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global optimal due to the presence of convexity. Figure B.1 pictorially shows the

convexity of the logistic cost function.

0.0 0.2 0.4 0.6 0.8 1.0
h (x)
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y=1
y=0

Figure B.1: The Logistic Regression Penalty Function

Lemma B.2.1. The logistic regression cost function J(θ) is convex,

J(θ) = − 1

m

m∑

i=1

[
y(i) log hθ

(
x(i)
)

+ (1− y(i)) log
[
1− hθ

(
x(i)
)] ]

(B.2.11)

The proof Lemma B.2.1 is given in the Appendix B.1. Next, we need to find the

value of θ that minimizes the cost function.

θ? ∈ argmin
θ∈Θ

J(θ)

= argmin
θ∈Θ

1

m

m∑

i=1

L
(
hθ
(
x(i)
)
, y(i)

)

= argmin
θ∈Θ

− 1

m

m∑

i=1

[
y(i) log hθ

(
x(i)
)

+ (1− y(i)) log
[
1− hθ

(
x(i)
)] ]

(B.2.12)

Algorithm 8 uses gradient descent to find θ ∈ Θ that minimizes the cost function

J(θ).

Remark B.2.1. The partial derivative of the cost function with respect to θk is

given by ∂
∂θk

J(θ) = 1
m

m∑
i=1

(hθ
(
x(i)
)
− y(i))x

(i)
k .
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Algorithm 8: Gradient Descent Algorithm for Logistic Regression

Input: Arbitrarily initialize θk for k=0, step size α > 0, integer T > 0 and
sample (x,y) ∼ D

Output: Weight vector θ̄ that performs best on the validation set.

for k = 1, 2, . . . , T do
1 Update weight: θ(k+1) = θ(k) − α∇J(θ(k))

2 Set k = k + 1 and return to step 1.

end

3 θ̄ =
T∑
k=1

θ(k)

Although Algorithms 7 and 8 look identical, the difference comes from the cost

function J(θ). Recall that the regression used hθ(x) = θ>x hypothesis function, but

the classification used hθ(x) = 1

1+e−θ>x hypothesis function. Just as in the regression

case, Gradient decent works well in practice for differentiable convex function J(θ).

For example, suppose J(θ) is a differentiable convex function with Lipschitz gradient

then for fixed step size α ≥ 1
L

, we can get the following convergence rate Jπ(θ(k)) −

Jπ(θ?) ≤ ||θ(k)−θ?||
2αk

(see Appendix B.1.8).

For multiclass classification problem where y ∈ {1, . . . , n}, Algorithm 9 is used to

reduce it to the binary case. In other words, we will divide the multiclass problem

into n binary classification problems. Let S =
{

(x(i), y(i))
}m
i=1

denote the training

sample set. We split the sample S into n binary sets S1,S2, . . . ,Sn, where Sk =
{(
x(i), 0 · 1(y(i) 6=k)

)}m
i=1

for each k ∈ [n]. Moreover, for each problem we will predict

the probability that y is a member of one of our classes. We train n classifiers,
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h
(k)
θ : X → {0, 1} based on Sk for each k ∈ [n].

h
(1)
θ (x) = P(y = 1|x;θ)

h
(2)
θ (x) = P(y = 2|x;θ)

... (B.2.13)

h
(n−1)
θ (x) = P(y = n− 1|x;θ)

h
(n)
θ (x) = P(y = n|x;θ)

Thus the rule for the multiclass predictor is given by

hθ(x) = max
k∈[n]

(
h

(k)
θ (x)

)
(B.2.14)

Algorithm 9: One-vs-All Classification

Input: Sample training set S =
{

(x(i), y(i))
}m
i=1

and a binary classification

algorithm A.

Output: Multiclass hypothesis function hθ(x)

for k = 1, 2, . . . , |Y| do

1 Sk =
{(
x(i), 0 · 1(y(i) 6=k)

)}m
i=1

2 h
(k)
θ = A(Sk).

end

3 hθ(x) = max
k∈[n]

(
h

(k)
θ (x)

)

At each stage, Algorithm 9 chooses one class and combine the rest into a single second

class, resulting to a binary classification problem. .
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Generalization and Overfitting

Generalization of a machine learning algorithm refers to your model’s ability to adapt

properly to new, previously unseen data, drawn from the same distribution as the one

used to create the model. There are two main concerns: underfitting and overfitting.

Underfitting usually occurs when the learning model has a high bias. In other words,

the hypothesis function maps poorly to the trend of the data set. This problem is

sometimes caused by an overly simplified function that uses very few features. So the

oversimplification may impact the performance of the model both on training data

set and new data sets. On the other hand, overfitting occurs when the model has a

high variance. In other words, the hypothesis function fits the training data perfectly

but does not generalize well to new data sets. This problem is usually caused by

an overly complicated function that uses too many features. Figure B.2 shows the

trade-off between bias and variance for learning algorithms.

Algorithm Complexity

Er
ro

r

Total Error
Bias^2
Variance
Optimal Balance

Figure B.2: Bias-variance Trade-off Complexity Illustration

In practice, these fitting problems are often solved via regularization. The idea is

to penalize the loss function by adding a complexity term that would give a bigger loss

for more complex models. l2−norm and l1−norm are two commonly used penalization
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functions. Bellow we give an example of these regularization using the regression

objective function.

• l2 Regularization for regression:

J(θ) =
1

2m

[ m∑

i=1

(
hθ
(
x(i)
)
− y(i)

)2

+ λ||θ||22
]
, (B.2.15)

• l1 Regularization for regression:

J(θ) =
1

2m

[ m∑

i=1

(
hθ
(
x(i)
)
− y(i)

)2

+ λ||θ||1
]
, (B.2.16)

where λ > 0 is the regularization parameter. The regularization parameter essentially

controls the trade off between fitting the data well and keeping the parameters of the

model relatively small.

The regularization for the normal equation is also similar. Let’s define an (n+ 1)

by (n+ 1) matrix as

Ī =




0

1

. . .

1




where all the off diagonal elements are zeros. So the optimizer for the normal equation

to the regularized regression is θ̂ = (X>X+λĪ)−IX>y. It is easy to see that (X>X+

λĪ)−I always exists. For the proof, it suffices to show that (X>X + λĪ) is positive
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definite. Clearly X>X � 0, since for all z ∈ Rn

z>X>Xz = ||Xz||2

≥ 0

So we have

z>(X>X + λĪ)z = z>X>Xz + λz>z

= ||Xz||2 + λ||z||2

≥ 0

Thus (X>X + λĪ) � 0 and z>(X>X + λĪ)z = 0 only if z = 0.

For the classification objective function, we have the following.

• l2 Regularization for classification:

J(θ) = − 1

m

m∑

i=1

[
y(i) log hθ

(
x(i)
)

+ (1− y(i)) log
[
1− hθ

(
x(i)
)] ]

+
λ

2m
||θ||22,

(B.2.17)

• l1 Regularization for classification:

J(θ) = − 1

m

m∑

i=1

[
y(i) log hθ

(
x(i)
)

+ (1− y(i)) log
[
1− hθ

(
x(i)
)] ]

+
λ

m
||θ||1.

(B.2.18)

The regularized cost functions can then be optimized using gradient decent as de-

scribed previously. It is expected that the new hypothesis function, obtained from

optimizing the regularized cost function, would generalize to new data sets. Further-

more, it is common in machine learning to try multiple models and find one that
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works best for a particular problem. There is no one model that works best for every

problem (see the No-Free-Lunch theorem in Shalev-Shwartz and Ben-David (2014)).

B.3 The Structural Building Block for Deep

Learning

We briefly introduce the fundamental building block of a neural network, which is a

single neuron, also known as a perceptron. Figure B.3 depicts the forward propaga-

tion of information through a Perceptron (also known as the neuron). Given a set

of inputs {x1, . . . , xm} with the corresponding weights {w1, . . . , wm}. The final out-

put of a perceptron ŷ is obtained by multiplying each input with the corresponding

weight, sum them to get a single number and then pass the sum through a non-linear

activation function. We also have what is called a bias term in this neuron, which

you can see here in green. The purpose of the bias term is to allow you to shift your

activation function to the left and the right, regardless of your input.

X
ŷ

{

WeightsInputs Sum Non-Linearity Output

B
ia

s

x1

x2

xm

...

1

wm

w2

w1

w0

Figure B.3: The forward propagation of information through a neuron.
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For convenience, Figure B.4 gives a simplified version of the perceptron by remov-

ing the bias and weight labels. This implicitly assumes that every line has a weight

associated with it. And Denote z as the dot product (element-wise multiplication of

input and weights). So the final output is activation function applied on z.

ŷ

{

WeightsInputs Output

B
ia

s

x1

x2

xm

...

1

wm

w2

w1

w0

z

Hidden

Figure B.4: The simplified perceptron

z = w0 +
m∑

j=1

xjwj = w0 +XTW (B.3.1)

and

ŷ = g (z) = g
(
w0 +XTW

)
(B.3.2)
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where:

X =




x1

...

xm




and W =




w1

...

wm




To define a multi-output neural network, we simply just add another one of these

neurons. Now, let’s take a look at a single layer Neural Network. We have a single

hidden layer that feeds into a two output layer as depicted in Figure B.5. The middle

layer is often called the hidden layer because unlike our inputs and outputs, the

states of the hidden layer are not directly observable. Since we have a transformation

between the input and hidden layer and the hidden layer and the output, each of

those two transformations would have their own weight matrices denoted by W (1)

and W (2).
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Inputs Output

x1

x2

xm

...

Hidden

z1

z2

...

z3

zd1

ŷ1

ŷ2

W(1) W(2)

Inputs Output

x1

x2

xm

...

Hidden

z1

z2

...

z3

zd1

ŷ1

ŷ2

⇥ ⇥

Figure B.5: Two output single layer neural network. In (a), a fully connected densed

layer is denoted by forward directed arrows and in (b), a special symbol is used to

denote fully connected densed layer.

zi = W
(1)
0,i +

m∑

j=1

xjW
(1)
j,i (B.3.3)

249



and

ŷi = g

(
W

(2)
0,i +

d1∑

j=1

g(zj)W
(2)
j,i

)
(B.3.4)

Lastly, if we want to create a deep Neural network, the idea is basically the same

thing except you just keep stacking on more of these hidden layers as shown in Figure

B.6.

Inputs Output

x1

x2

xm

...

Hidden

...

ŷ1

ŷ2

⇥⇥ · · · ⇥⇥ · · ·

zk,1

zk,2

zk,3

zk,dk

Figure B.6: Two output deep neural network

zk,i = W
(k)
0,i +

dk−1∑

j=1

g(zk−1,j)W
(k)
j,i (B.3.5)

Activation functions are used to determine the firing of neurons in a neural net-

work. Given a linear combination of inputs and weights from the previous layer, the

activation function controls how we’ll pass that information on to the next layer. An

ideal activation function is both nonlinear and differentiable. The nonlinear behavior

of an activation function allows the neural network to learn nonlinear relationships in

the data; it essentially introduces non-linearities into the network. Differentiability of

an activation function is important because it allows us to backpropagate the model’s
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error during training and the process of optimizing the network weights. Below are

some common activation functions.

Sigmoid (Logistic) Function: An activation function of the form given in Equation

B.3.6 . Its Range is between 0 and 1 and has an Sshape as depicted in Figure B.7.

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0 g(z)
g′(z)

Figure B.7: Sigmoid (Logistic) Function

g(z) =
1

1 + e−z
(B.3.6)

and

g′(z) = g(z) · (1− g(z)) (B.3.7)
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Hyperbolic Tangent: An activation function of the form given Equation B.3.8.

Now its output is zero centered because its range in between −1 to 1 as shown in

Figure B.8.

4 3 2 1 0 1 2 3 4

1.0

0.5

0.0

0.5

1.0

g(z)
g′(z)

Figure B.8: Hyperbolic Tangent

g(z) =
ez − e−z
ez + e−z

(B.3.8)

and

g′(z) = 1− g(z)2 (B.3.9)

Rectified Linear Unit (ReLu): An activation function of the form given Equation

B.3.10. Now its output is a piecewise linear function as shown in Figure B.9.
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Figure B.9: Rectified Linear Unit (ReLu)

g(z) = max{0, z} (B.3.10)

and

g′(z) =





1 if z > 0

0 otherwise

(B.3.11)

Scaled-exponential Linear Units (SeLU): An activation function of the form

given Equation B.3.12. Figure B.10 shows SeLU. The right side (for z larger than

zero) resembles ReLUs. However, the left side (for z smaller than zero) seems to

approach a gradient of zero.
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Figure B.10: Scaled-exponential Linear Units (SeLU)

g(z) = λ





α(ez − 1) for z < 0

z for z ≥ 0

(B.3.12)

and

g′(z) = λ





g(z) + α for z < 0

1 for z ≥ 0

(B.3.13)
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Appendix C

Appendix to Chapter 4

C.1 Additional Background on Reinforcement

Learning

Definition

Definition C.1.1 (Contraction Mapping). An operator B is a contraction mapping

if ∀ F, G and γ ∈ [0, 1), we have ||BF −BG||∞ ≤ γ||F −B||∞.

Properties of Contraction Mapping: If B is a contraction mapping, then

1. F ? = BF ? has a solution and it is unique,

2. Ft = BFt+1 and Ft converges to the F ?.

Definition C.1.2 (Bellman Operator). Let B be an operator from a value functions

defined as follows:

[BQ](s, a) = R(s, a) + γ
∑

s′

T (s, a, s′) max
a′

Q(s′, a′)
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Theorem

Theorem C.1.1. Let T be a bellman operator. Let Q1 and Q2 be two value func-

tions. Then

||TQ1 − TQ2||∞ ≤ γ||Q1 −Q2||∞

Proof. Given two value functions Q1andQ2, then we have

||TQ1 − TQ2||∞ = max
a,s

∣∣∣[TQ1](s, a)− [TQ2](s, a)
∣∣∣

=

max
a,s

∣∣∣
(
R(s, a) + γ

∑

s′

T (s, a, s′) max
a′

Q1(s′, a′)
)
−
(
R(s, a)

+γ
∑

s′

T (s, a, s′) max
a′

Q2(s′, a′)
)∣∣∣

= max
a,s

∣∣∣γ
∑

s′

T (s, a, s′)
(

max
a′

Q1(s′, a′)−max
a′

Q2(s′, a′)
)∣∣∣

≤ max
a,s

∣∣∣γmax
s′

(
max
a′

Q1(s′, a′)−max
a′

Q2(s′, a′)
)∣∣∣

= γmax
s′

∣∣∣max
a′

Q1(s′, a′)−max
a′

Q2(s′, a′)
∣∣∣

≤ γmax
s′

max
a′

∣∣∣Q1(s′, a′)−Q2(s′, a′)
∣∣∣(max is non-expansive)

= γmax
a,s

∣∣∣Q1(s, a)−Q2(s, a)
∣∣∣

= γ||Q1 −Q2||∞

Theorem C.1.2. Let F be a complete vector space equipped with the norm || · ||

and let T : F → F be a γ-contraction mapping. Then T admits a unique fixed point

V .
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Proof. We show that the bellman operator admits a unique fixed point. For any

U, V ∈ F :

||U − V || = ||U − TU + TU − TV + TV − V ||

≤ ||U − TU ||+ ||TU − TV ||+ ||TV − V || (triangle inequality)

≤ ||U − TU ||+ γ||U − V ||+ ||TV − V || (contraction property).

So we have

||U − V || ≤ ||U − TU ||+ ||TV − V ||
1− γ . (C.1.1)

If U and V are both fixed points then ||U − TU || = 0 and ||TV − V || = 0. From

equation C.1.1, ||U −V || ≤ 0, which implies U = V . Therefore T admits at most one

fixed point.

Theorem C.1.3 (Value Improvement). Let π and π′ be any two deterministic poli-

cies. If Qπ(s, π′(s)) ≥ V π(s) for all s ∈ S =⇒ V π′(s) ≥ V π(s) for all s ∈ S
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Proof.

V π(s) ≤ Qπ(s, π′(s))

= Eπ′
[
Rt+1 + γV π(St+1)

∣∣∣St = s
]

≤ Eπ′
[
Rt+1 + γQπ(St+1, π

′(St+1))
∣∣∣St = s

]

= Eπ′
[
Rt+1 + γEπ′

[
Rt+2 + γV π(St+2)

∣∣∣St = s
]∣∣∣St = s

]

= Eπ′
[
Rt+1 + γRt+2 + γ2V π(St+2)

∣∣∣St = s
]

...

≤ Eπ′
[
Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .

∣∣∣St = s
]

= V π′(s) (C.1.2)

Next, we briefly review the multi-armed bandit problem, which is useful in under-

standing how Monte-Carlo tree search balances between exploration and exploitation.

Multi-armed bandit problem

Multi-armed Bandit problem is a sequential decision problem in which one needs

to choose between K actions to maximize the cumulative reward by taking optimal

action at each stage. For example, consider a gambler standing at a row of K slot

machines. The gambler needs to decide which machines to play and how many times

to play each machine. The main objective of the gambler is to maximize the sum

of rewards earned through a sequence of lever pulls. Assuming the gambler has no

initial knowledge about the underlying reward distributions for each slot machine.

Thus the gambler must estimate the rewards from past observation and faces the

tradeoff between exploration of new machines, to obtain more information about the
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expected payoffs, and exploitation of the observed machines, by using past experience

to exploit the machine with the highest expected payoff.

Formally, a multi-bandit problem with K arms is defined by the sequence of

random payoff Xi,t for 1 ≤ i ≤ K, and t ≥ 1, where each i is the index of a

gambling machine. Assume that each random payoff lies in the unit interval. Also

assume that successive plays of machine i with random payoffs Xi,1, Xi,2, Xi,3, . . . are

independent and identically distributed according to an unknown distribution Di on

the unit interval and unknown mean µi = E[Xi,n] for n ≥ 1.

So the gambler needs a policy that determines which machine to play given the

history of payoffs. A policy, in this case, is a mapping that selects the next arm to be

played based on the sequence of past selections and payoffs obtained. The goal of a

good policy is to minimize the gambler’s regret. The regret is defined as the difference

between what the gambler would have won by playing solely on the actual best slot

machine and the gamblers expected winnings under the strategy that he is using.

Formally, the regret ρ after T rounds is defined as the expected difference between

the reward sum associated with an optimal strategy and the sum of the collected

rewards:

ρT = Tµ? −
T∑

t=1

r̂t

where: µ? = maxk{µk} is the maximum expected reward and r̂t = E[Yt] is the

estimated reward at time t. More specifically, for each round t = 1, 2, . . . , T , the

gambler chooses It ∈ {1, 2, . . . , K} based on his past observation and receives a reward

Yt ∼ DIt . An efficient way of solving the bandit problem, by minimizing the regret, is

to choose the move with the highest upper confidence bound. In other words, we need

a strategy that will balance the trade-off between exploration and exploitation. The

common strategy is to balance between exploration and exploitation using an upper
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confidence bound (UCB). The UCB constructs a statistical confidence intervals for

each machine.

x̄i ±
√

2 lnn

ni
,

where:

• x̄i: the mean payout for machine i.

• ni: the number of plays of machine i.

• n: the total number of pays

A simple UCB often know as UCB1 is defined as follows:

UCB1 = x̄i +

√
2 lnn

ni
(C.1.3)

The first term x̄i is the exploitation term. It represents the average winning rate

discovered so far for the given option i. The second term
√

2 lnn
ni

is the exploration

term. It gives value to those options which have not been explored as much. Using

UCB C.1.3 to minimize regret was proposed in Auer et al. (2002). The idea is to

choose an action that optimizes the UCB1 value at each round. The strategy is

to pick the machine with the highest upper bound during each play. The regret of

playing with this strategy grows only as O(lnn).

Monte Carlo Tree Search

We briefly review the Monte-Carlo Tree Search (MCTS), for extensive survey see

Browne et al. (2012a). The four main steps of MCTS are summarized below. Each

iteration of MCTS involves these four steps.
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1. Selection: starting from a root node R, select successive child down to a leaf

node L using some tree policy.

2. Expansion: if the leaf node L is not a terminal node, create one or more child

nodes and choose node C from them. This step expands the tree by adding one

or more child nodes.

3. Simulation:play a random rollout from the child node C according to a simu-

lation policy.

4. Back-Propagation: use the result of the rollout to update the statistical in-

formation in the nodes on the path from C to R.

Step 1 and 2 are often grouped as the Tree Policy. and step 3 is sometimes called

the default policy. Algorithm 10 summarizes these steps through a generic MCTS

procedure.

261



Algorithm 10: Generic MCTS Algorithm

Input: Given algorithms TreePolicy, DefaultPolicy, BackPropagate,

UpdateStates and BestAction. Let S denote the current root

node state and τ denote the sample time for each MCTS run.

Output: Best action A for the current state.

for k = 1, . . . , τ do

1 v ← TreePolicy(S)

2 r ← DefaultPolicy(γ(v));

3 BackPropagate(v, r)

4 UpdateStates(S, r)

end

5 A = BestAction(S, 0)

MCTS iteratively builds a partial search tree. How the nodes are selected affect

how the MCTS tree is built. The Upper Confidence Bound for Trees (UCT) is the

most popular MCTS algorithm. UCT suggests treating the selection of a child node

as a multi-armed bandit problem. Just like in the multi-armed bandit problem, UCB1

is used to address the trade-off between exploration and exploitation. Treating the

choice of child node as a multi-armed bandit problem, then the value of the child is

the expected reward approximated by the Monte Carlo simulations. So the rewards

can be treated as random variables with unknown distributions just as the pay-off

of the multi-armed bandit problem. Each time a child node is to be selected from

the existing tree, the choice may be modeled as an independent multi-armed bandit

problem. The choice of the selection of child nodes in the selection and expansion
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phases is determined using upper confidence bounds for trees (UCT). Defines as

follows:

UCT = x̄i + 2Cp

√
2 lnn

ni
(C.1.4)

where: Cp is a positive constant. n is the number of times the current parent node has

been visited and ni is the number of times child i has been visited. Equation C.1.4

is very similar to the UCB1 equation except for the added constant. A child node

i is selected to maximize the value of UCT C.1.4. When ni = 0 then UCT value is

infinity. The previously unvisited nodes are assigned the largest possible value. This

ensures that the previously unvisited nodes are considered at least once before any

child is expanded further.

C.2 Markov Decision Process

A Markov Decision Process (MDP) provides a mathematical framework for modeling a

sequential decision-making problem. In what follows, we briefly review the observable

MDP and the partially observable MDP. Let the tuple M = 〈S,A, T, R, γ〉 denote

the Observable Markov Decision Process, where:

• S is the finite non-empty set of states.

• A is the finite non-empty set of actions for each s ∈ S.

• P : S × A → Π(S) is the state transition function. And Pa(s, s
′) = P(s′|s, a)

denotes the probability of transitioning from state s to state s′ using action a.

• R : S×A → R is the reward function. We write R(s, a) for the expected reward

for taking action a in state s.
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• γ ∈ (0, 1) is the discount factor.

Environment

Agent

Rt+1

St+1

action At
state St

reward Rt

Figure C.1: The Markov Decision Process Environment

Figure C.1 is a diagrammatic representation of an MDP Environment, it shows

how the agent interacts with the environment. The agent here refers to the thing that

takes actions (neural network) and the environment is simply the world in which the

agent operates or acts. Next, define a policy as a mapping from the state space to the

action space, π : S → A. The goal, in this setting, is to discover an optimal policy

π?. There are many different approaches to finding a policy with maximum expected

return. For illustration purpose, we will use the value function approach. Define the

state-value function V π : S → R as follows:

V π(s) = Eπ
{ ∞∑

t=0

γtR(st, π(st))
∣∣∣s0 = s

}
, s ∈ S. (C.2.1)

The value function (C.2.1) is essentially the expected sum of discounted rewards

upon starting in the state s and taking actions according to the policy π. For a given
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policy π the value function (C.2.1) satisfies the Bellman equations:

V π(s) = Eπ
[ ∞∑

t=0

γtR(st, π(st))
∣∣∣s0 = s

]

= Eπ
[
R(s0, π(s0)) +

∞∑

t=1

γtR(st, π(st))
∣∣∣s0 = s

]

= Eπ
[
R(s, π(s)) + γ

∞∑

t=0

γtR(st, π(st))
∣∣∣s0 = s

]

= R(s, π(s)) + γ
∑

s′∈S

P (s, π(s), s′)V π(s′). (C.2.2)

Equation (C.2.2) decomposes the value function into two terms: First, the immediate

reward for starting in state s and the expected sum of future discounted rewards. In a

finite-state MDP, the Bellman’s equations can be used to efficiently solve for V π?(s).

Since we know how to solve a system of |S| linear equations in |S| unknown variables.

According to (C.2.1) and (C.2.2), the optimal action-value V ?(s) can be defined as

the solution to the simultaneous equations.

V ?(s) = max
a∈A

(
R(s, a) + γ

∑

s′∈S

T (s, a, s′)V ?(s′)
)
, ∀s ∈ S, (C.2.3)

and the optimal policy

π?(s) = argmax
a∈A

V π(s)

= argmax
a∈A

(
R(s, a) + γ

∑

s′∈S

P (s, a, s′)V ?(s′)
)
. (C.2.4)
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It is often useful to express the value function (C.2.1) in terms of action-value

function Qπ : S ×A → R called Q-function. Define the Q-function as follows:

Qπ(s, a) = Eπ
[ ∞∑

t=0

γtR(st, at)
∣∣∣s0 = s, a0 = a

]

= Eπ
[
R(s0, a0) +

∞∑

t=1

γtR(st, at)
∣∣∣s0 = s, a0 = a

]

= Eπ
[
R(s, a0) + γ

∞∑

t=0

γtR(st, π(st))
∣∣∣s0 = s, a0 = a

]

=
∑

a∈A

π(a|s)
∑

s′∈S

Pa(s, s
′)

[
R(s0, a0) + γV π(s′)

]
, (C.2.5)

were π(a|s) is the probability of taking action a when in state s. Maximizing Equation

C.2.5 gives the optimal policy:

π?(s) = argmax
a∈A

Qπ(s, a)

= argmax
a∈A

(∑

a∈A

π(a|s)
∑

s′∈S

Pa(s, s
′)
[
R(s0, a0) + γV π(s′)

])
, ∀s ∈ S. (C.2.6)

Similarly, let the tupleM =< S,A, P, R,O, Z, γ, b0 > denote a Partially Observ-

able Markov Decision Process (POMDP), where

• S is the non-empty set of states.

• A is the non-empty set of actions for each s ∈ S.

• P : S × A → Π(S) is the state transition function. And Pa(s, s
′) = P(s′|s, a)

denotes the probability of transitioning from state s to state s′ using action a.

• R : S ×A → R is the reward function. R(s, a) denotes the expected reward for

taking action a in state s.

• R : S ×A → R is the reward function.
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• O is the non-empty observation space

• Z encodes the observation probabilities. Here we write Zat(ot, st+1) = P(o|s, a)

for the probability of observing ot by taking action at and landing in the state

st+1

• γ ∈ (0, 1) is the discount factor.

• b0 is the initial belief state.

POMDP is a generalization of MDP to settings where the states are not fully

observable. It provides a natural model for sequential decision making under un-

certainty. Although POMDPs extends the MDPs to many realistic settings, the

generalization comes with high computational cost. As a result, the application of

POMDPs remains limited to small scale problems. In POMDP, it is often assumed

that the underlying system dynamics are governed by an MDP but the agent can

not directly observe the underlying states. So the agent needs to maintain a belief

state. A belief sate b(s) is the probability of being in s according to its history of

actions and observations. The belief in a POMDP captures all the information in

the history ht = {a1, o1, r1, . . . , at, ot, rt} needed to predict future events. When the

agent performs an action at ∈ A based on belief b, following a particular policy π, it

receives a reward and transition to state st+1. The quality of the policy π is measured

by the expected future reward. In this setting, a policy π is a mapping from the set

of observable histories to the action space π : Ho → A. The belief update at time
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t+ 1 is given by:

bt+1(st+1) = P(st+1|ot, at, bt)

=
P(st+1, ot)

P(ot|at, bt)

=
P(ot|st+1, at, bt)P(st+1|at, bt)

P(ot|at, bt)

=

P(ot|st+1, at, bt)
∑
s∈S

P(st+1|s, at, bt)P(s|at, bt)

P(ot|at, bt)

=

Zat(ot, st+1)
∑
s∈S

Pat(st, st+1)b(s)

P(ot|at, bt)

= K · Zat(ot, st+1)
∑

s∈S

Pat(st, st+1)b(s)

∝ Zat(ot, st+1)
∑

s∈S

Pat(st, st+1)b(s) (C.2.7)

The agent’s goal remains to maximize the expected discounted future rewards. It has

been shown that finite POMDP can be converted to the framework of fully observable

MDP called Belief state MDP Hauskrecht (2000). A belief MDP is a 4-tuple M =<

B,A, T b, Rb >, where

• B is the continuous state space.

• A is the action space.

• T b : B × A → B is the belief transition function. Here we write T ba(b, b′) =

P(b′|b, a) for the probability of transitioning from belief b to belief b′ using

action a.

T ba(b, b′) = P(b′|b, a)

=
∑

o∈O

P(b′|b, a, o)P(o|b, a)

=
∑

o∈O

P(b′|b, a, o)
∑

s′∈S

Za(o, s
′)
∑

s∈S

Pa(s, s
′)b(s) (C.2.8)
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where P(b′|b, a, o) = E[1{bao=b′}] and bao(s
′) = bt+1(s′)

• R : B × A → R is the reward function. We write Rb(b, a) for the expected

reward for taking action a under the belief b, where

Rb(b, a) =
∑

s∈S

b(s)R(s, a) (C.2.9)

For the infinite horizon, a policy is a mapping from the belief space into actions,

π : B → A. And the Q-function is defined by

Qπ(b, a) =
∑

s∈S

b(s)R(s, a) + γ
∑

o∈O

P (o|a, b)V π(bao) (C.2.10)

And the optimal policy is given by

π?(s) = argmax
a∈A

Qπ(b, a)

= argmax
a∈A

(∑

s∈S

b(s)R(s, a) + γ
∑

o∈O

P (o|a, b)V π(bao)
)
, ∀s ∈ S. (C.2.11)

C.3 Implementation Details

Neural Network Architecture

The policy and value function The policy and value function approximations use

fully-connected neural networks with five and two hidden layers, respectively, and

SELU (scaled exponential linear unit) activation (Klambauer et al., 2017). The policy

network contains two sets of outputs: (1) one of seven actions (no action, normal

attack, move, skill 1, skill 2, skill 3, and heal) and (2) a two-dimensional direction

parameter used for the action. The first two hidden layers are shared and have 120 and

100 hidden units, while each of the two outputs corresponds to a set of three hidden
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layers with 80, 70, and 50 hidden units. The value function approximation uses a

fully-connected network with 128 hidden units in the first layer and 96 hidden units

in the second layer. As mentioned in the main paper, this architecture is consistent

across all agents whenever policy and/or value networks are needed.

Features of the State

As shown in Table C.1, the state of the game is represented by 41-dimensional feature

vector, which was constructed using the output from the game engine and API. The

features consists of basic attributes of the two heroes, the computer-controlled units,

and structures. The feature lists also have information on the relative positions of

the other units and structures with respect to the hero controlled by algorithm.
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Table C.1: The state feature list for the reinforcement learning agent

No. Feature Dim.

1 Location of Hero 1 2

2 Location of Hero 2 2

3 HP of Hero 1 1

4 HP of Hero 2 1

5 Hero 1 skill cooldowns 5

6 Hero 2 skill cooldowns 5

7 Direction to enemy hero 3

8 Direction to enemy tower 4

9 Direction to enemy minion 3

10 Enemy tower HP 1

11 Enemy minion HP 1

12 Direction to the spring 3

13 Total HP of allied minions 1

14 Enemy’s tower attacking Hero 1 3

15 Hero 1 in range of enemy towers 3

16 Hero 2 in range of enemy towers 3

Tree Search Details

We provide some more information regarding the implementation of feedback-based

tree search. A major challenge in implementing in King of Glory is that the game

engine can only move forward, meaning that our sampled states are not i.i.d. and

instead follow the trajectory of the policy induced by MCTS. However, to decrease the

correlation between visited states, we inject random movements and random switches

to the internal AI policy in order to move to a “more random” next state. Rollouts are

performed on separate processors to enable tree search in a game engine that cannot
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rewind. All experiments use the c4.2xlarge instances on Amazon Web Services, and

we utilized parallelization across four cores within each call to MCTS.

Computation

For the first two rounds, k = 1 and k = 2, samples were collected from 60 games each.

On the next five rounds, samples were collected from 40 games each. All experiments

used the c4.4xlarge instance of Amazon Web Services.

272



Bibliography

Lina Al-Kanj, Warren B Powell, and Belgacem Bouzaiene-Ayari. The information-
collecting vehicle routing problem: stochastic optimization for emergency storm
response. arXiv preprint arXiv:1605.05711, 2016.

Eric Angel. A Survey of Approximation Results for Local Search Algorithms, pages 30–
73. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-32213-9.
doi: 10.1007/11671541 2.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep
learning and tree search. In Advances in Neural Information Processing Systems,
2017.
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