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Abstract

Deep neural networks (DNNs) are vulnerable to “back-
door” poisoning attacks, in which an adversary implants
a secret trigger into an otherwise normally functioning
model. Detection of backdoors in trained models without
access to the training data or example triggers is an impor-
tant open problem. In this paper, we identify an interesting
property of these models: adversarial perturbations trans-
fer from image to image more readily in poisoned models
than in clean models. This holds for a variety of model and
trigger types, including triggers that are not linearly sepa-
rable from clean data. We use this feature to detect poisoned
models in the TrojAI benchmark, as well as additional mod-
els.

1. Introduction

Deep Neural Networks (DNNs) have achieved success in
many mission-critical tasks, such as malware detection, face
recognition, autonomous driving, medical diagnosis, etc.
[30, 34, 28, 3, 2]. However, it has been shown that DNNs
are vulnerable to backdoor poisoning attacks, in which an
adversary implants a secret trigger into an otherwise nor-
mally functioning model [7, 21, 22, 19]. In backdoor at-
tacks, an adversary embeds a hidden backdoor into DNNSs,
such that the compromised DNN model performs well on
benign samples and misclassifies when the hidden backdoor
is activated by an adversary-defined trigger. These back-
door attacks do not seek to degrade classification accuracy,
but rather to control the behavior of the classifier by adding
the trigger to data [38, 10].

Detecting the presence of a backdoor in a trained model
without access to examples of the trigger is an important
open problem [5, 36, 38]. A number of works have sought
to detect poisoning by examining the internal network acti-
vations during training or at run time [23, 24, 40]. However,
a neural network training supply chain is complex [15], so

assuming access to all training data is often unrealistic. Fur-
thermore, monitoring a model for run time anomalies is ex-
pensive and likely too late [37]. Therefore, it is important to
be able to identify poisoning by inspecting the model itself.

To this end, we identify a feature of poisoned models that
is detectable without access to any examples of the trigger:
the transferability of their adversarial perturbations (TOP)
from one image to another. Our solution does not assume
access to training data or specific information about the tro-
jan trigger. It requires only the pre-trained model and a
small set of benign inputs representative of the domain.
Main Contributions. We identify TOP, a novel property
of poisoned neural networks, and develop a reliable method
for using this property to detect poisoning. We validate the
TOP method in a variety of settings, including a standard
benchmark for backdoor detection. Finally, we show that
this method is effective without extensive tuning or train-
ing.

2. Preliminaries

In this section, we briefly introduce our main notations and
describe our threat model.

2.1. Notation

Let + € R? be a d-dimensional image from some natu-
rally occurring distribution p(z). Let class : R? — C =
{c1,...,cm } Tepresent a class mapping of an arbitrary im-
age. For simplicity, we assume that class exists and is de-
terministic. We use f : R — Y to denote a neural net-
work, where ) is a probability simplex over classes C. We
define a function §( f, z) representing an untargeted adver-
sarial “evasion” attack (e.g., PGD | ]) on neural network
f for input x over some attack domain A and loss function
L:

(5(f,:v)zargmaxﬁ<f(x),f(x+6)) (1)
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For the loss function £, we use cross entropy between
the adversarial prediction and the original class prediction,



equivalent to:

L(y,§) = —log§-1{ argmax(y)}, 2)

where 1 is the indicator function. This is the standard loss
function used in untargeted evasion attacks [9].

2.2. Threat model

We briefly describe the assumptions of the attacker and the
defender.

Setting. Our threat model considers a user who wishes to
utilize a DNN trained in an untrusted environment. For ex-
ample, the model could be trained by a third party, in a cloud
computing environment, or on a system infected with mal-
ware. The user knows the basic DNN functionality (e.g., the
nature of the expected input data, what classes it is trained
on), and has some validation data to test performance on.
Since the user has the ability to examine the validation data,
it is presumed to be clean and correctly labeled. The user
checks the accuracy of the trained model on the validation
dataset and only deploys the DNN if it has satisfactory val-
idation accuracy.

Attacker. We make the following assumptions about the
resources and goals of the attacker. The attacker has full
control over the training procedure and the training dataset,
but does not have access to the data used for validation. The
attacker can train the DNN on an arbitrary dataset, including
any number of poisoned training inputs, and can manipulate
the training process in arbitrary ways.

The attacker’s goal is to produce a maliciously back-
doored model that satisfies two properties. First, it must
pass the user’s validation threshold. Second, applying a
trigger function 77 : RY — R? to a normal image z
must change the model’s behavior in a prescribed way. We
make the following assumptions about trigger functions.
First, a triggered image T'(z) is unlikely to occur natu-
rally. Second, trigger functions rarely change the class (i.e.,
P(class(T(z)) = class(z)) ~ 1). Lastly, T(x) and «
have a small “magnitude” difference, with magnitude re-
lated in some way to human perception. We discuss differ-
ent approaches for quantifying magnitude in Section 5. For
the purposes of this paper, we assume that the presence of
the trigger should change the backdoored model’s predic-
tions from some set of source classes Cs; C C to a target
classc; € C.

Defender. We make the following fundamental assump-
tion about the resources available to the defender. The de-
fender does not have access to the backdoor training data
or process, since training takes place in an untrusted envi-
ronment. The defender only has access to the trained DNN
and a small validation dataset. We presume the validation
set to be clean and correctly labeled, as it can be manually
verified or spot-checked by the defender. The goal of the

defender is to determine whether or not a given DNN has
been infected by a backdoor.

3. Related Work

We briefly discuss several existing backdoor attacks and de-
tection techniques besides those discussed in the introduc-
tion.

Backdoor (Trojan) Attacks. Neural network vulnerabili-
ties have been exploited by backdoor attacks [12, 35]. Bad-
Nets by Gu et al. [12] first explored the vulnerabilities of
the DNN by injecting backdoors into a neural network via
dataset poisoning. While BadNets require clearly misla-
beled in the training set, other proposed attacks are more
covert, performing poisoning without obvious mislabeling
[35, 31, 21]. Moreover, Liu et al. [21] shows a backdoor
attack on DNN is also possible without access to the origi-
nal clean training data and without the need to compromise
the original training process. A comprehensive survey of
backdoor attacks can be found in [22, 19].

Backdoor Detection. Several backdoor detection tech-
niques have been proposed in the literature [36, 13, 11,

, 20, 6]. Existing backdoor detection techniques can be
broadly categorized as either detecting malicious inputs at
runtime [23, 24, 40, 8, 1 1] or scanning models to determine
if they have backdoors [5, 13, 36, 37, 33, 32, 1]. The for-
mer, detecting malicious inputs at runtime, often relies on
having access to a poisoned input to decide the malicious
identity of a model. Both SentiNet [8] and STRIP [1 1] un-
dertake a run-time detection of backdoor by examining in-
puts of an actively deployed model. Similarly, Chen et al.
[5] proposed an Activation Clustering methodology for de-
tecting and removing backdoors. While Activation Cluster-
ing demonstrates the effectiveness in detecting trojan back-
doors, it assumes access to the training data.

We focus on the case where one does not require poi-
soned input or the training data to decide the malicious iden-
tity of the model. Neural Cleanse by Wang et al. [36] pro-
poses an optimization technique for detecting and reverse
engineering hidden triggers embedded inside deep neural
networks for each class. Similarly, TABOR by Guo et al.
[13] formalizes the detection of trojan backdoors as an op-
timization problem and identifies a set of candidate trig-
gers by resolving this optimization problem. Both Neural
Cleanse and TABOR attempt to reconstruct the backdoor
and require solving custom-designed optimization prob-
lems.

Our technique is also inspired by the work of Sun e al.
[33], which showed that backdoor attacks create poisoned
classifiers that can be easily attacked even without knowl-
edge of the original backdoor. We build upon this work
by identifying an inherent property of poisoned neural net-
works that is detectable without access to any examples of
the trigger. This inherent property of poisoned neural net-



works is based on the transferability of adversarial pertur-
bations.

4. Transferability

Our motivating observation is that adversarial perturbations
readily transfer from image to image in poisoned models,
whereas clean models are more likely to resist such a trans-
fer. We define a transfer attack from image x; to image x;
as follows:

53]‘ =Ty +6(f,.131) (3)

Figure 1 shows an adversarial perturbation from one image
being added to three different images. We use two metrics
to quantify the characteristics of transfer attacks for a partic-
ular model. Given a set of n sample images {z1,...,z,},
fool rate (FR) is the proportion of images whose class pre-
dictions change under a transfer attack:
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Fool concentration (FC) is concerned which class most pre-
dictions get changed to. Intuitively, reverse engineering the
trigger of a poisoned model will lead to an out-sized pro-
portion of images changing to the (unknown) target class.
FC detects this behavior by measuring how often perturba-
tions change predictions to a particular class. Formally, we
define FC as follows:

FC = ke{l 2 n2 Z Z 1{‘—‘1]k} (5)
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where Z;;;, = (f(xi +6(f,x;)) = ck) A (f(a:z) £ ck).
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Figure 1. Adversarial perturbation from image x; added to addi-
tional images.
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Figure 2. Clean and perturbed images and the model’s class predic-
tions. Since all images change class, F'R = 1. Since two images
change to ¢4, FC = 2/3.

Note that both of these metrics are functions of a partic-
ular model and a particular attack. Our observation is that
both FR and FC tend to be larger for a poisoned model than
a clean one over a broad class of attacks. This makes intu-
itive sense for many common triggers, such as the “checker-
board” pattern from Gu et al. [12] or a watermark trigger
from Liu et al. [21]. Models poisoned with these triggers
essentially have a universal adversarial perturbation built
into them [27]; so as long as §(f, x;) successfully reverse
engineers this perturbation, a transfer attack should be suc-
cessful. More generally, it is reasonable to assume that this
behavior exists for any trigger that is linearly separable from
clean data. Suppose there exists a hyperplane defined by
W € R%, b € R such that

P(Wz+b>0)~0,and P(W-T(z)+b>0) ~ 1. (6)

Such a hyperplane is easy for a neural network to learn dur-
ing training, and the vector W, projected onto the attack
domain A, will be an effective attack for any image outside
of the target class. Surprisingly, though, this phenomenon
holds even when triggered data is not linearly separable
from clean data. We designed two non-linear triggers and
trained poisoned models with them:
3-Pixel Flip Trigger. This trigger rotates 3 specific pixels
zW, 22 26) around their means. We set (V) := 2,1 —
2 fori € {1,2,3} where u(¥) is the mean of (%),
CDF Flip Trigger. This trigger flips a single pixel z(!),
while preserving its per-class marginal distribution. This
ensures that there is no hyperplane that divides clean and
triggered samples for any class. To accomplish this, we set
W) = CDF;'(1 — CDF.(zV)) where CDF, is the
marginal CDF of pixel (1) for class class(z).

Figure 3 shows examples of all four triggers applied to
the Fashion MNIST dataset. To verify that these triggers are
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Figure 3. Fashion MNIST examples (top row) with different trig-
gers applied (second row). Bottom two rows show images and

perturbations resulting from reverse engineering the triggers from
poisoned models.
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not linearly separable from clean data, we trained logistic
regression models poisoned with each trigger on the Fash-
ion MNIST dataset [39] and examined their performance,
shown in Table 1. Linearly separable triggers are easy for
these models to spot and do not affect performance on clean
data. On the other hand, linear models cannot fully sep-
arate the non-linear triggers from clean data, and poison-
ing them with the non-linear triggers drops performance on
clean data (shown in bold).

Table 1. The logistic regression performance on different trigger
types.

. Clean Trigger
Trigger Accuracy Acctglfacy
None 0.84 -
Checkerboard 0.84 1.00
Watermark 0.84 1.00
3 Pixel Flip 0.67 0.66
CDF Flip 0.77 0.20

We trained two types of nonlinear models on Fashion
MNIST with each of these triggers embedded in them. We
used a shallow 4 layer convolutional neural network (CNN)
and a 3 layer fully connected neural network (FCNN). Un-
like logistic regression, the nonlinear models were able to fit
both clean and triggered data relatively well. We generated
adversarial perturbations on these models using a sparse ¢,
PGD attack, implemented in AdverTorch [9]. We set the
sparsity to 0.99 and used attack strength € = 5. We used 50

random starts of 10 step PGD and selected the perturbation
with the maximal loss. Example perturbations and the re-
sulting adversarial images are shown in the bottom rows of
Figure 3. Using these perturbations, we computed our TOP
metrics FR and FC, which we show in Table 2. Poisoning
the models with any of these triggers results in elevated FR
and FC metrics, regardless of whether the trigger is linearly
separable from clean data or not. Applying a threshold to
either metric leads to perfect separation of clean (in bold)
and poisoned models.

Table 2. TOP metrics on Fashion MNIST models.

Clean Trigger

Model Trigger Accuracy | Accuracy FR FC
None 0.92 - 0.08 | 0.02
Checkerboard 0.91 1.00 0.30 | 0.15

CNN Watermark 0.91 1.00 0.31 | 0.31
3 Pixel Flip 0.91 0.93 0.79 | 0.77

CDF Flip 0.90 0.73 0.81 | 0.75

None 0.88 - 0.08 | 0.03
Checkerboard 0.88 0.99 0.50 | 0.34

FCNN Watermark 0.87 1.00 0.68 | 0.66
3 Pixel Flip 0.86 0.87 0.64 | 0.60

CDF Flip 0.84 0.70 0.67 | 0.62

5. Reverse Engineering Triggers

The TOP method does not require pristine reconstructions
of a Trojan trigger to work. However we have found in
practice that good reverse engineering of the trigger tends
to increase the separation of clean and poisoned models
with respect to our TOP metrics. Good reverse engineering
also offers concrete examples of what perturbations seem to
be transferable across images, which may aid a human de-
fender in reducing false detections or determining the nature
of the true trigger.

Our general approach to reverse engineering triggers is
to use PGD [25] to solve for §, as defined in Equation 1,
over a set of plausible triggers that form the attack domain
A. For ideal reverse engineering, the set A would be as
small as possible while still containing the perturbations in-
duced by the trigger function. Since the trigger function
doesn’t change the true class but does change the poisoned
model’s prediction, trigger perturbations generally produce
large loss values relative to other perturbations and are good
solutions to the maximization problem used in the definition
of  given on Equation 1.

Common triggers used in the literature include local-
ized triggers (e.g., stickers, patches), watermarks, and filters
(e.g., Instagram filters). We define A’s that approximately
correspond to these different types of triggers. A localized
trigger generally induces large changes to a small set of pix-
els. An attack domain based on a bound on the £y norm or a
sparse /1 norm bound encompasses such triggers. For wa-



termarks, £, or £5 bounded attack domains roughly capture
possible triggers.

5.1. Adversarial Filters

Filter triggers typically modify an image by a large amount
in terms of any £, norm, so traditional adversarial attack
domains are not particularly well suited reverse engineering
this type of trigger. To address this case, we introduce the
adversarial filter. Instead of constraining the norm of the
additive perturbation, we constrain the norm of a convolu-
tional filter. Formally, we solve the following optimization
problem for filter w:

(@), ) 7
max flx), flx+w=x) (7
where the search space W = {w|||w|]| < £} for some
norm || - ||. We have found ¢, and ¢ to serve effectively

as the norm. Adversarial filters give us a set of perturba-
tions with a very small measure in image space, but large
constraints on perturbation norm, mirroring the behavior of
Instagram triggers. Our experiments show that this tech-
nique gives a significant improvement in detecting poisoned
models with Instagram triggers.

5.2. Combining Attack Domains

Factors such as adversarial training, network architecture,
and trigger type can strongly affect the response of a neural
network to a particular adversarial attack. To make the TOP
algorithm as robust as possible to these different factors,
we compute FR and FC separately on a variety of adversar-
ial perturbation strengths and types. We use logarithmically
spaced attack magnitudes, spanning from very small attacks
with little impact on the classifiers to very large attacks that
saturate the FR and FC metrics. We then treat these as fea-
tures for a simple classifier that can pick up TOP signals
in a variety of models. We use a logistic regression classi-
fier and an iterative feature selection procedure to combine
these scores into a final probability of poisoning. Given
some set of training models, we train a logistic regression
classifier on all features. We then prune features with neg-
ative weights and repeat this procedure until all weights are
positive. Since we expect all TOP metrics to be positively
correlated with poisoning, this is a way of incorporating our
prior beliefs as a regularizer on the training process. We
found that this procedure consistently improves top level
metrics, especially with small training sets.

6. Experiments

In this section, we perform experiments to evaluate our TOP
method and show that our method does not require exten-
sive tuning to achieve reasonable performance.

6.1. Datasets

Fashion MNIST. We trained 40 models of various archi-
tectures on the Fashion MNIST dataset [39]. Half of these
models were poisoned with the 4 triggers discussed in sec-
tion 4. We randomly selected the architecture from a set
consisting of fully connected networks with {3, 4} layers or
CNNs with {5, 6, 7, 8, 9} layers. For the poisoned models,
we randomly selected one of the 4 triggers and a target class.
We trained models for 30 epochs with the Adam optimizer
[17]. We ensured that models met minimum a classification
threshold of 0.6 on clean and triggered data.

CIFAR-10. We also trained 10 models on the CIFAR-10
dataset [ 18], a well-known image classification dataset with
an image size of 32x32. The models have different network
architectures consisting of DenseNet-{121, 161, 169, 201}.
Half of the models are clean and the other half of the mod-
els are poisoned with Instagram Gotham Filter attack us-
ing the TrojAl software framework [16], an open source set
of Python tools capable of generating triggered (poisoned)
datasets and associated deep learning models with trojans.
Figure 4 shows an example of a clean example and an ex-
ample of a Gotham filter-based adversarial example from
the CIFAR-10 dataset.

2 sed
(a) Clean

.
(b) Gotham Filter

Figure 4. Examples of both clean and triggered images from the
CIFAR-10 dataset.

TrojAI benchmark. The TrojAl program, organized by
IARPA [14], aims to tackle the backdoor detection prob-
lem by defining a set of public benchmarks, presented in
“rounds”. Each round defines a set of clean and poisoned
training models. The benchmark task is to predict whether
models in a test set are clean or poisoned. We report results
on TrojAl rounds 1-3. These rounds involve models that are
trained on synthetically generated traffic sign data. Round
1 uses randomly generated polygons as triggers. A polygon
trigger has a randomly chosen number of sides between 3
and 12 and a color chosen uniformly at random from [0, 1]3.
Rounds 2 and 3 use both polygons and five specific Insta-
gram filters as triggers. Figure 5 depicts examples of clean
and triggered images from the TrojAl benchmark dataset.
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Figure 5. Examples of both clean and triggered images from the
TrojAl benchmark dataset.

We briefly introduce a few notations to describe the
dataset. Let M and M’ be sets of neural network models
for training and testing. Let GG be a set of neural network
architectures, C be a set of class labels, and D be a set
of validation images. Table 3 summarizes the statistics of
the three rounds. Round 1 uses DenseNet121, InceptionV3,
ResNet50 architectures. Rounds 2 and 3 use various net-
work architectures.

Table 3. The summary of TrojAl benchmark datasets.
| Dataset | [M] [ [M'[[|G]] [C] | [D] |

compute FC. Since we only use one detection score here, we
can compute AUC without any additional scaling. We use
Platt scaling [29] (equivalent to univariate logistic regres-
sion) to arrive at a calibrated probability based on a small
set of “training” models M. We randomly sample class-
balanced calibration sets of different sizes and perform 500
evaluations. Table 4 shows the results of this process. We
ran an additional experiment in which we train our detector
on one type of trigger and evaluate it on other types. These
results are shown in Table 5. These results show that TOP
provides accurate and well calibrated detection probabili-
ties with just a few training models and can be effective in
detecting novel triggers.

Table 4. Fashion MNIST results by training set size.
[ [M] [ AUC [ CE |

1 0.962 | 0.382
2 0.962 | 0.341
3 0.962 | 0.322
5 0.962 | 0.307
10 | 0.962 | 0.275

Table 5. Fashion MNIST CE results by trigger type.

Round 1 | 1000 | 100 | 3 | 5 | 100|C]
Round2 | 1104 | 144 | 22 | <25 | < 20|C]
Round 3 | 1108 | 288 | 22 | <25 | < 20|C]

6.2. Evaluation Metrics

We use two accuracy metrics consistent with the metrics
used in TrojAl competition [14]: Area under Receiver Op-
erating Characteristic Curve (AUC) [4] and cross-entropy
loss (CE) [26]. AUC captures how well a classifier sep-
arates clean and poisoned models by integrating detection
and false alarm probabilities at different thresholds. CE
captures both class separation and how well calibrated the
predicted probability of poisoning is. CE is a more stringent
metric. AUC is in the [0, 1] interval where perfect separa-
tion gives a score of 1.0 and random guessing gives an AUC
of 0.5. CE is in the [0, 00) interval where perfect, confident
classification gives a CE of 0 and assigning a probably of
0.5 to all samples gives a CE of In(2) = 0.693. The TrojAl
program sets a CE score of {n(2)/2 =~ 0.347 as a detection
performance goal.

6.3. Experimental Results

Results for Fashion MNIST. We used the sparse ¢; attack
outlined in section 4 with sparsity = 0.99 and ¢ = 5. We
note that while this attack is well-suited to some of the trig-
gers, it is not particularly well-suited to the watermark trig-
ger, which is not sparse. We used these perturbations to

—— Testing | oy ocker | Watermark | 3 Pixel | CDF
Training
Checker - 0320 | 0.181 [ 0239
Watermark 0370 - 0258 | 0321
3 Pixel 0.430 0362 0027
CDF 0335 0265 | 0072 | -

Results for TrojAL We start by comparing our two met-
rics, fool rate and fool concentration, on the TrojAl dataset.
Figures 6 and 7 compare the effectiveness of FR and FC in
discriminating between clean and poisoned models at dif-
ferent attack magnitudes across different rounds. Figure 6
shows the median and 80th percentile spread of FR scores
for all attack strengths for rounds 1, 2, and 3 respectively.
Figure 7 shows the same for FC. While fool rate is able
to discriminate well in all three rounds, fool concentration
provides a stronger signal. We use FC as the basis for the
subsequent results in this section.

We calibrated our detector on a random partition of 25%
of the training set provided by the TrojAl benchmark. Ta-
ble 6 shows the top line metrics for different subsets of the
rounds and triggers.

We also examined our detector’s performance when it is
trained on small training sets. We randomly sampled class-
balanced subsets of the rounds 1-3 training sets, calibrated
the detector, and evaluated it on the test models from the
respective round. We performed this experiment 200 times
for each training set size. Figures 8(a) and 8(b) show how
the number of training models impacts the top level metrics
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Figure 6. Median and 80% confidence bounds on FR scores for TrojAI benchmark models at different /1 attack strengths.
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Figure 7. Median and 80% confidence bounds on FC scores for TrojAl benchmark models at different ¢; attack strengths.

Table 6. The top-level results on TrojAl benchmark models.

Models Trigger(s) | CE | AUC |
Round 1 Polygon 0.42 | 0.87
Round 2 Polygon 0.40 | 0.89
Round 2 | Polygon+Instagram | 0.49 | 0.85
Round 2 Instagram 0.44 | 0.86
Round 3 Polygon 0.35 | 0.90
Round 3 Instagram 0.49 | 0.79
Round 3 | Polygon+Instagram | 0.50 | 0.83

on the test models. Even with just a single positive and neg-
ative example, our detector can effectively separate clean
and poisoned models, with an AUC over 0.8 for all rounds.
Cross-entropy is a more challenging metric, but our detec-
tor can achieve the 0.5 level with between 4 and 32 models,
depending on the round.

We now look at how well our detector functions without
independent and identically distributed (IID) data to train
on. This is a very challenging setting, but a very impor-
tant one for practical backdoor detection. To test this, we
train our detector on each round, then test it on all three
rounds. This forms a matrix of AUC scores, shown in table
7, in which the diagonal values represent IID performance

and off-diagonal represents non-IID performance. While
the performance is far from perfect, TOP is able to discrim-
inate between clean and poisoned models in a non-IID set-
ting with an AUC around 0.75.

Table 7. The cross-round AUC performance for all models in the
TrojAl benchmark datasets.

.. Testing Roundl | Round2 | Round3
Training
Round1 0.87 0.77 0.70
Round2 0.88 0.78 0.75
Round3 0.68 0.79 0.76

Figure 9 shows how well TOP works with “matched”
and “mismatched” attacks. Even though we designed ad-
versarial filters with Instagram triggers in mind, they still
are fairly effective serving as the basis for detecting models
with polygon triggers, providing AUC scores above 0.7 in
both rounds. Sparse ¢; attacks are not as effective on In-
stagram triggers, but they still provide a signal that is better
than guessing.

Results for CIFAR10. To show the robustness of TOP in
different settings, we used the detector from our TrojAl ex-
periments on the CIFAR10 models. We compute our stan-
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Figure 9. Detecting two types of triggers with different attack domains.

dard set of attacks and calibrate on 8 models. We also cal-
ibrated a detector using only the filter-based attacks. We
used repeated random subsetting in which we trained on 8
models and tested on 2 to allow us to compute mean CE and
AUC metrics over multiple trials. Table 8 shows results for
a TOP detector based on only filter attacks, as well as the
full ¢, and filter attack set. Since the true trigger is a filter,
our filter attacks work especially well on it. However, the
full detector works nearly as well with minimal training.

Table 8. The top-level results on CIFAR10 models.

| Attacks | CE | AUC |
Filter 0.46 | 0.92
Filter + /1 | 0.54 | 0.84

7. Conclusion and Future Work

In this paper, we identified an interesting property of trained
deep neural network models - that adversarial perturbations
transfer from image to image more readily in poisoned mod-
els than in clean models. We showed that this transferabilty

property holds for a variety of model and trigger types, in-
cluding triggers that are not linearly separable from clean
data. We used this feature to detect poisoned models in the
TrojAl benchmark, as well as other dataset. We showed that
TOP is a robust indicator of backdoor poisoning, even in
challenging non-IID settings, and in settings without many
example models.
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