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Abstract—In encrypted search, a server holds an encrypted
database of documents but not the keys under which the
documents are encrypted. The server answer keyword queries
from a client with the list of documents matching the query.

In this paper we present two highly scalable protocols to
search over encrypted data which achieve full security against
a possibly malicious server and supports conjunctive queries
where the client submits many keywords and is asking the
server to identify the documents that match all the keywords.
The first protocol we present works in the single client model,
where the party searching the data is also the data owner who
originally stored with the server. The second protocol works in the
more challenging multi-client model, where a data owner stores
encrypted data with a server, and the allows a client to search
the data via a query-based token.

To be truly scalable, previous solutions for conjunctive queries
do not require the server to look at every document in the
encrypted database, but assume an honest but curious server.
There are, however, realistic situations in which this assumption
might not hold: for example when the software running on the
server has been infected by malware. In this case the protocols
above may not offer any meaningful security guarantee.

Our solution removes this limitation without substantially
increasing the computational cost compared to the honest-but-
curious protocols. Therefore we are able to obtain full security
against malicious servers basically ”for free”.

I. INTRODUCTION

Searchable encryption (SE) [14], [33] allows a data owner
to encrypt a set of documents and store them with a server, and
then later be able to search them based on a particular query.
The best security definition requires that the server holding the
encrypted documents should learn nothing about the results of
a search.

The above scenario is usually referred to as the single-
client model, in which the client querying the data is also
the data owner. This scenario arises in applications where the
data owner outsources its data to an untrusted service provider
(which requires the data to be encrypted) but wants to maintain
the ability to efficiently search it.

There are however applications where the data owner and
the client querying the data are not the same entity. In the
multi-client (MC) setting for searchable encryption, a data
owner, e.g. a government agency A, encrypts the databases it
holds and deposit them at a third party server S. Subsequently,
agency A can enable any other entity, e.g. another government
agency B, to access the records0 relevant to a particular query.
The search should be conducted in such a way that ideally

1) Agency A (the data owner) does not learn the query
posed by agency B;

2) Agency B (the client) only learns the records that
match its query;

3) The server S processes the query without learning
anything about the data or the query, in particular
without ever a need to decrypt anything or to learn
the decryption keys.

Note that the MC model presents already an interesting tech-
nical challenge: the data owner (who owns the decryption keys
for the data) must be able to provide the client with a query-
based decryption token that would allow the latter to decrypt
the data that matches the query (and only that data!)

A. State Of The Art

Solutions for SE (in any of the models above) can be
achieved in theory using ”generic” protocols for secure mul-
tiparty computation (e.g. [34], [3]), which however are not
feasible for problems of even moderate size. It was recognized
early on that the best way to obtain efficient solution is to
augment the encrypted databases with an index that allows
the processing of queries over encrypted data (e.g. [24]), and
then modeling and assessing the ”knowledge inference” or
”leakage” provided by the index and the queries over the
encrypted data (e.g. [9]).

For the case in which the Client queries a single keyword to
the server, there are several solutions that achieve a reasonable
level of efficiency even for large databases (e.g. [14], [33], [19],
[10], [11], [26]

The case of conjunctive queries – where a client submits
w1 ∧ . . . ∧ wn and the server responds with the identities of
the documents that match all the keyword – proved to be a
lot more challenging. Some early solutions (e.g. [23], [1], [5])
require the server work linear in d, the number of documents
in the stored database which for certain applications might be
prohibitively high.

Recent work has tackled this problem and achieved so-
lutions that do not require the server to look at every single
document in the database. A partial list of recent works include
[7], [25], [6], [31], [8], [18].

This breakthrough, combined with the use of efficient
cryptographic primitives (blockciphers and hash functions)
and data structures, results in solutions with low storage and
computation overhead, and with performance numbers that are
not far from ”regular” plaintext search over data in the clear.

One way in which these protocols are able to obtain such
impressive performance is via a relaxation of the security
definition that allows some harmless leakage. For example,
while the ideal security guarantee would be that the server S
learns nothing while it processes the search query, a protocol
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might leak to S the number (but not the identity) of the
documents matching the query. Similarly when the client B
issues a composite query, it might learn some information
about a subset of the query – for example if B searches for
the documents containing w1 AND w2, it might also learn
how many documents contain w1 (while ideally it should only
learn the IDs of the documents containing both words). While
allowing a limited amount of leakage allows for dramatic
efficiency improvements, it is also necessary to formalize what
this leakage is, in order to be able to technical bound it and
analyze its relevance (something that the protocols mentioned
above do at length).

B. Our Contribution

The above protocols have a ”built-in” limitation in their
security model: they assume a server which always follow the
protocols without deviating from it. This is usually referred to
as the honest but curious adversary: it will not cheat, but it
will try to learn information. In particular it means that the
server’s answer is always assumed to be correct.

Under these circumstances encrypting the data is sufficient
to prevent the adversary from learning information, but in and
by itself does not guarantee the correctness of the protocol
as a whole. There are realistic situations in which the server
might deviate from the instructions dictated to them by the
protocol specifications: consider for example the case in which
the software running on the server has been infected by some
malware. In this case the protocols above may not offer any
meaningful security guarantee.

In this paper we present two highly scalable protocols for
conjunctive queries over encrypted data which achieve full
security against a possibly malicious server. The first protocol
we present works in the single client model, while the second
protocol works in the more challenging multi-client model.

Our solutions start from one of the most efficient SE
protocol (the OXT Protocol described in [7], which supports
queries for conjunctions of keywords, and its extension to
the multi-client case in [25]). The latter supports possibly
malicious clients, but not a malicious server.

The OXT protocol uses a very clever combination of
hashing/indexing together with blinding techniques based on
Diffie-Hellman type of cryptography. Our enhanced scheme
uses the same type of tools and adds several modifications to it
which yield full security against active attackers. As described
below, these modification do not substantially increase the
computational cost nor the amount of leakage of the original
protocol. Therefore we are able to obtain full security against
active attackers basically ”for free”.

C. Other related work

A different approach used in [31], [35] is based on the
concept of Bloom Filters [4]. The protocol in [31] works only
for the case of honest-but-curious adversary and it achieves
efficiency comparable to [7]. Recently an extension for the
case of malicious clients appeared in [18], but still assumes an
honest-but-curious server.

In [35] Zheng et al. present VABKS Verifiable Attribute-
Based Keyword Search which is basically a verifiable MC

search scheme, like ours. In VABKS, a document D is owned
by a data-owner which stores it encrypted with the server.
Later the data-owner allows data-users to perform keyword
searches on D. Given a keyword w, the data-owner releases a
token tw to the data-user which will allow the latter to query
the server and learn if w ∈ D or not, together with a proof
that the server answered correctly. Since they use attribute-
based encryption (ABE) the data-owner can issue tokens for
very expressive ”search policies” rather than single keywords.
The server will learn nothing about D nor the keywords which
are queried, (although in the public-key model, the server can
perform “keyword guessing attacks”, since it is equipped with
an equality oracle). Meanwhile, the data-user learns only about
the keywords from which the data-owner released him a token.

While VABKS provides for more flexible search policies
than our protocol, it pays the price in terms of efficiency in
the use of ABE since it requires relying on bilinear maps
cryptography, which is significantly less efficient than the
”traditional” Diffie-Hellman groups we use.

Finally we point out to recent work in [15] where the
Shuffle Index is introduced as an alternative way to provide
query confidentiality over encrypted data.

II. DEFINITIONS

A database DB = {indi,Wi}di=1, is defined as a collection
of d documents, each consisting of a set of keywords Wi, and
identified by an index string indi.

A query ψ(w1, . . . , wk) to the database is defined by a
vector of keywords: [w1, . . . , wk] and a Boolean formula ψ on
them. With DB(ψ(w1, . . . , wk) we denote the set of indices
that satisfy the query, meaning that indi ∈ DB(ψ(w1, . . . , wk)
if ψ(b1, . . . , bk) = 1, where bj = (wj ∈Wi).

All algorithms are assumed to be probablisitc poly-time
unless specified otherwise. In the following λ is a security
parameter which is given as input to all algorithms described
below.

The definitions below are adapted from definitions in the
literature for SE (e.g. [7], [25].) We add the Verifiability
property, by providing an extra soundness condition against
actively adversarial servers. Additionally, we modify the se-
curity definition for SE, by making sure that simulatability is
achieved against active adversaries. We point out that in the
case of multi-client SE, security against an actively malicious
client was already considered (e.g. [25], [18]).

A. Single Client Verifiable Searchable Encryption

A single-client verifiable searchable encryption (VSE)
scheme consists of a protocol between a Data Owner D and
a Server S in two phases:

• EDBSetup is run by the Data Owner alone on input
a database DB to ouput a key K and a data structure
EDB which is an encrypted form of DB together
with some additional information to make the search
efficient;

• Search The Data Owner runs on input the key K and
query ψ(w1, . . . , wk), while the Server runs on input
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EDB. The Data Owner outputs a set of indices in DB
or ⊥, while the Server has no output.

We say that EDBSetup,Search is

• Correct if when the Data Owner D and the Server
S run the protocol then the Data Owner outputs the
correct set of indices DB(ψ(w1, . . . , wk));

• Sound if for every, possibly malicious adversary A
playing the role of the Server, the Data Owner outputs
a set of indices I 6= DB(ψ(w1, . . . , wk) or I 6= ⊥ only
with negligible (in λ) probability;

To define the security of SE we use a leakage function
L, which defines what an adversary (in our case the server)
is allowed to learn about the database and the queries. This
notion is formalized by requiring that the adversary’s view
during the protocol can be simulated given only the output of
L.

Let (EDBSetup, Search) be a SE scheme and let L be a
stateful algorithm. Let A be an adversary and Sim a simulator.
Define experiments Real and Ideal as follows.

Real: A chooses DB. The experiment then samples
(K,EDB) ← EDBSetup(DB) and gives EDB to A. Then A
repeatedly chooses a query q. To respond, the game runs the
Search protocol with input (K, q) interacting with A running
on input EDB. Eventually A returns a bit that the game uses
as its own output.

Ideal: A chooses DB. The experiment runs EDB ←
Sim(L(DB)) and gives EDB to A. Then A repeatedly chooses
a query q. To respond, the game engages Sim on input
L(DB, q) to run Search interacting with A. Eventually A
returns a bit that the game uses as its own output.

We say that the SE scheme is L-secure if for every
adversary A playing the role of the server, there exists a
simulator Sim, such that

Pr[Real = 1]− Pr[Ideal = 1]

is negligible in λ.

We say that the protocol is secure for non-adaptive queries,
if the search queries q are chosen by the Adversary at the
beginning of the protocol before receiving EDB.

B. Multi-Client Verifiable Searchable Encryption

In MC-VSE a Client is authorized by the Data Owner to
search the database, on a per query basis. This means that
the Data Owner should provide the Client with a query-based
token which will allow the Client to interact with the Server,
and obtain the database matches to the query.

Syntactically in a MC-VSE we include an additional al-
gorithm GenToken which on input the secret key K, gener-
ated by the Data Owner D during EDBSetup and a query
ψ(w1, ldots, wk) submitted by client C, generates a search-
enabling value token tψ(w̄). Then the procedure Search is
executed by the server S on input EDB, together with the
Client C running on input tψ(w̄).

Correctness and Soundness are defined similarly to before,
i.e. when everybody is honest the Client outputs DB(ψ(w̄)),

and for any adversarial server, the client either rejects or
outputs the correct set DB(ψ(w̄)) (both statements hold except
with negligible probability).

Security against a malicious server is defined as in the
single-client case. Security against malicious client is also
defined via simulatability and a leakage function, and we refer
the reader to [25] for the formal definition. We restrict our
attention to the case in which the Data Owner is honest.

III. TOOLS

In this section we describe the tools that we need to
construct our solution.

A. Cryptographic Tools

Decision Diffie-Hellman [16]. Let G be a cyclic group of
prime order p = p(λ), and let g ∈ G be a generator. We say
that the Decision Diffie-Hellman (DDH) assumption holds in
G if for all adversaries A we have that

|Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]|
is negligible in λ (where the probability is over the randomness
of A and uniformly chosen a, b, c ∈ Zp.

Pseudorandom Functions [20]. Let X and Y be sets, and
let F : {0, 1}λ × X → Y be a function. We say that F is a
pseudorandom function (PRF) if for all adversaries A,

|Pr[AF (K,·)(1λ) = 1]− Pr[Af(·)(1λ) = 1]|
is negligible in λ (where the probability is over the randomness
of A, and uniformly chosen K ∈ {0, 1}λ, and uniformly
chosen function f from X to Y . )

Collision Resistant Hashing. Let X and Y be sets, with |Y | ≤
|X|, and let H : {0, 1}λ × X → Y be a function. We say
that F is a collision-resistant hash function (CHRF) if for all
adversaries A,

Pr[A(K) = (a, b) : a 6= b and H(K, a) = H(K, b)]

is negligible in λ (where the probability is over the randomness
of A, and uniformly chosen K ∈ {0, 1}λ). In the following we
might drop the key K as input to the function and just denote
H = H(K, ·) for a randomly chosen K.

Secure Digital Signatures [32], [22]. A digital signature
scheme (KG,Sig, V er) is a triplet of randomized algorithms.

The key generation algorithm KG takes as input a key 1λ

and outputs a pair of keys (sk, vk). The signature algorithm
Sig on input sk and a message M ∈ {0, 1}∗, outpus a
signature σ. The verification algorithm V er on input vk,M, σ
outputs a bit b. We require that V er(vk,M, Sig(sk,M)) = 1
always.

We say that (KG,Sig, V er) is secure against chosen
message attack if for all efficient adversaries A,

Pr[(sk, vk)← KG(1λ) ; ASig(sk,·)(vk) = (M,σ)

s.t. M /∈ Q and V er(vk,M, σ) = 1]

is negligible in λ (where Q is the set of messages queried by
A to the Sig oracle, and the probability is over the randomness
of A and KG) .
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Semantically Secure Encryption [21]. A symmetric encryp-
tion scheme (Enc,Dec) is a pair of algorithms, the first
randomized and the second deterministic. Enc takes as input
a key K ∈ {0, 1}λ and a message M ∈ {0, 1}∗ and outputs
a ciphertext C. Dec takes as input a key K ∈ {0, 1}λ and a
ciphertext C and outputs a message M . We require that for
all possible keys K and M , Dec(K,Enc(K,M)) = M .

We say that (Enc,Dec) is semantically secure under
chosen plaintext attack if for all efficient adversaries A, and
for all messages M0,M1 we have that

|Pr[AEnc(K,·)[M0,M1, E(M0)] = 1−

Pr[AEnc(K,·)[M0,M1, E(M1)] = 1|

is negligible in λ (where the probability is over the randomness
of A, and uniformly chosen K ∈ {0, 1}λ).

B. Authenticated Sets

Assume a client has a set Set and needs to store it with a
possibly untrusted server. An authenticated set data structure
is a way to store Set with the server so that later when the
client issues membership queries (i.e. queries of the form is a
in Set) the answer of the server must be correct (except with
negligible probability). More formally

An Authenticated Set (A-SET) consists of a protocol
between a Data Owner D, a client and a Server S in two
phases:

• Setup is run by D alone on input a set Set. The ouput
is a key K and a data structure A-Set which is given
to the Server.

• Query The Client runs on input the key K and query
a, while the Server runs on input A-Set. The Client
outputs a value b ∈ {0, 1,⊥.

We say that Setup,Query is

• Correct if when the parties C,D, S run the protocol
then the Client at the end of Query outputs the bit
a ∈ Set.

• Sound if for every, possibly malicious adversary A
playing the role of the Server, the Client outputs a
value b 6= (a ∈ Set) and b 6= ⊥ with negligible (in λ)
probability;

We say that the protocol above is privately verifiable if
C = D and the key K must be kept secret. We say that the
protocol is publicly verifiable if K can be made public and
any party can play the role of the client.

There are many authenticated sets protocols in the literature
(e.g. [28], [30]) and any can be used in our main protocol
for encrypted search described later. For concreteness here
we recall the construction in [2], which is based on the
Diffie-Hellman assumption and has very attractive efficiency
parameters.

THE BGV PROTOCOL. In the following let G be a cyclic group
of prime order p = p(λ), generated by g.

Let Set = {a1, . . . , an} and assume w.l.o.g. that ai ∈ Zp
for a prime p (one can always assume a suitable encoding of
the elements into Zp).

Setup. Set defines a unique polynomial P (x) =
n∏
i=1

(x −

ai). The client stores this polynomial P (·) with the server
as a vector < c0, · · · , cn > of coefficients in Zp. Along
with the polynomial, the client also stores another vector
< t0, · · · , tn > of group elements of the form ti = ga·ci+ri ,
where ri = Fk(i) for a pseudo-random function F from
[1..n] into Zp. The secret key for the client are the values
k, a, while the authenticated set structure for the server is A-
Set= {c0, c1, . . . , cn, t0, t1, . . . , tn}. Let R(·) ∈ Zp[x] be the
pseudo-random degree-n polynomial defined by the ri’s.

Query. The client queries the server with an arbitrary input

a. The server returns y = P (a) =
n∑
i=0

cix
i mod p along with

a tag t =
n∏
i=0

tx
i

i . The client accept the result y if and only if

t = ga·y+R(x).

Security. The above protocol can be easily be proven
information-theoretically secure if R were a random polyno-
mial. Therefore security holds in a computational sense, under
the assumption that F is a secure PRF.

Efficiency. A generic implementation of the above protocol
requires the Client to work in time O(n) to verify the result
(since it requires the computation of R(a), by recomputing
every ri = Fk(i). In [2] the authors introduce the notion of
PRFs with closed form efficiency which allow the computation
of R(a) (and therefore the verification step above) in o(n)
time (in some cases with only O(1) groups operations in G)
by the Client who holds the secret key k used to generate
the polynomial R. The PRFs used in [2] can be proven secure
under the Diffie-Hellman assumption (or stronger variations of
it, if increased efficiency is desired).

The above solution is privately verifiable, but it is possible
to modify it to be publicly verifiable (see [17] or [29] for a
different polynomial-based approach).

IV. THE SINGLE CLIENT PROTOCOL FOR CONJUNCTIONS

In this section we present our protocol for Single Client
VSE that handles conjunctive queries i.e. queries of the form
w1 ∧ w2 ∧ . . . wn. To illustrate some of the challenges and
pitfalls of adding verifiability, we start by examining the case
in which queries are composed by a single keyword w. We
first present a simple but flawed protocol and then show how
to fix the problem, using techniques that will be at the basis
of the more sophisticated solutions for conjunctive queries.

Given a database DB = {indi,Wi}, the Client processes
it in a reverse index T constructed as follows. Let F be
a PRF function and (Enc,Dec) an encryption scheme. The
Client chooses keys KT ,Ke, and sets j = F (KT , w). Then,
the jth entry of the table T is T [j] = Lj , where Lj =
{Enc(Ke, indi)} is the list of encrypted document indices
indi such that w ∈ Wi. The searchable data structure given
to the server is EDB = (DB, T ). The clients stores KT ,Ke.
When the client queries w, it submits j = F (KT , w) and the
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server returns T [j] which allows the Client to decrypt all the
matching document indices..

This protocol works in the honest but curious case. Indeed,
notice that the Server does not learn which keyword was
queried (it only sees a pseudorandom value j) nor which
documents matched the query (the lists in T are encrypted).
On the other hand, the server learns if a query is repeated, and
the number of documents matching a query (this is the exact
leakage profile L of this protocol).

If the server is malicious, however, we have no guarantee
that T [j] is the correct list. Note that simply authenticating the
table T is not sufficient. Assume that the client chooses a key
Ka and and have the Client store T [j] = (Lj , F (Ka, (j, Lj))).
When upon a query w, the client returns T [j] = [L, t],
the Client checks that the value is correct by checking that
t = F (K, (H(w), L)), if so it accepts L = Lj as the list of
documents containing the keyword w.

The flaw here stems from the fact that the Server has no
way to prove that a keyword w never appears. For example in
the above protocol if the (honest) Server returns nothing for
w /∈ Wi ∀i then a dishonest server could return nothing even
when w appears in one of the documents.

To fix this problem we use authenticated sets. Let W be
the set of values j such that H(w) = j for w ∈ ∪iWi. The
client stores also an authenticated version of W . If w never
appears the Server shows it by showing that j = H(w) /∈W .
If w appears in at least one document, the Server executes the
above protocol. It is not hard to prove that this final protocol
satisfies our definition of VSE for single keyword queries (with
leakage profile L).

A. Our V-OXT Protocol

For simplicity, we are going to consider queries of the form
w1∧w2, but it will be easy to see that the protocol generalizes
to arbitrary conjunctive queries with n keywords.

To handle conjunctions of keywords, our starting point is a
simplified version of the OXT (Oblivious Cross Tags) protocol
from [7]. Consider the honest-but-curious solution for single-
keyword queries described above, where the client creates a
reverse index T . When the client queries j1, j2 (where jk =
F (KT , wk)), the server could return both T (j1) and T (j2)
and the client would compute the intersection of the two lists.
This solution however requires too much communication (the
indices of the documents matching either w1 or w2) and leaks
too much information to the Server (the number of documents
matching w1 and w2 individually).

For these reasons, [7], introduces the notion of oblivious
cross tags. These tags are basically pseudo-random values
associated to each pair of (indi, w) such that w ∈ Wi, i.e.
xtag(ind, w) = F (KX , (ind, w)) for a key KX generated
by the client. These tags are stored in a set XSet, with
the server. The client then first queries j1 = F (KT , w1)
and receives T (j1), which allows the client to decrypt all
the indices of the documents matching w1. Let this set be
IND(w1). At that point the client can compute xtag(ind, w2)
for all ind ∈ IND(W1) and query them to the server who tell
the client if they appear or not in XSet, allowing the client
to figure out for which indi, both w1, w2 ∈Wi.

Note that in this case the communication is reduced (pro-
portional to the number of documents matching w1 which can
be chosen as the least likely keyword in the query), and the
leakage as well (since the server now only learns the number
of documents matching w1, and w1 ∧ w2).

Using the ideas described above for the single keyword
queries we obtain our our verifiable protocol for conjunctions.
Informally the protocol works as follows. The client stores W
and Xset as authenticated sets and an authenticated version of
the table T with the server as described in the single keyword
query case. Then the client queries j1: if w /∈ W the server
returns a proof of it and the client can output the empty list.
Otherwise if w ∈ W , the server returns the authenticated list
T (j1), which allows the client to continue the protocol as
above, except that in this case he can trust the answers of
the server since XSet is also stored as an authenticated set. A
detailed description of the protocol follows in Figs. 1 and 2. .

The protocol is run on input DB = (indi,Wi)
d
i=1 for the

client. We denote with W = ∪iWi. We assume that F is a
PRF function, (Enc,Dec) an encryption scheme, and Setup,
Query an authenticated set protocol.

EDBSetup
1) Select keys KT ,KS ,KX ,Ka for PRF F ;
2) Initialize W,XSet to empty set and T to empty array;
3) ∀w ∈ ∪iWi:

• Set j = F (KT , w) and Kew = F (KS , w);
• For all i = 1, . . . , d, if w ∈Wi:
◦ Set ei = Enc(Kew, indi) and T (j) ←

T (j)||ei;
◦ Set xtagij = F (KX , indi, j) and

XSet← XSet ∪ {xtagij};
• Set aj = F (Ka, T (j)) and set T (j) ←

T (j)||ai;
• Set W ←W ∪ {j}

4) Run Setup on input W , let AW be the authenticated
set corresponding to W ;

5) Run Setup on input XSet, let AXSet be the au-
thenticated set corresponding to XSet;

6) Store sfEDB = [T,AW,AXSet] with the Server,
and keep KT ,KS ,KX ,Ka secret.

Fig. 1. Verifiable OXT - Setup phase

REMARK. We point out that in this case it is sufficient to use
a privately verifiable Authenticated Set protocol.

B. Security Proof

In this section we prove that our protocol leaks the same
amount of information of the original OXT Protocol in [7],
but adds the desirable verifiability property. We recall that a
searchable encryption protocol is secure only against honest-
but-curious adversaries, while a verifiable searchable encryp-
tion protocol is also secure against active adversaries.

In [7] it is proven that OXT is a searchable encryption
protocol with leakage profile L. We refer the reader to [7],
for a detailed description of the leakage patterns of OXT, but
here we just point out an obvious component of L which is
relevant for our proof. Note that for each keyword w queried
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Search(w1, w2)

1) Set Out to be the empty list.
2) The client computes j1 = F (KT , w1), j2 =

F (KT , w2)and Ke1 = F (KS , w1);
3) The client and the server run Query(j1, AW );

• If Client outputs ⊥ in the Query protocol, the
Client outputs ⊥ overall and stops;

• if j1 /∈W the Client outputs Out and stops;
4) The Server returns T (j1) = (L, a);
5) if a 6= F (Ka, L) the Client outputs ⊥ and stops;
6) For all ei ∈ L

• Set indi = Dec(Ke1, ei) and xtagi =
F (KX , indi, j2)

• The client and the server run
Query(xtagi, AXSet);
◦ If Client outputs ⊥ in the Query pro-

tocol, the Client outputs ⊥ overall and
stops;

◦ if xtagi ∈ AXSet the Client sets Out←
Out ∪ {indi};

7) The Client outputs Out.

Fig. 2. Verifiable OXT- Search phase

by the client in OXT as the primary term w1, the server learns
how many documents contain w1. Similarly for every keyword
w2, queried as the secondary term, the server learns how many
documents contain both w1 and w2.

Theorem 1: Assume OXT from [7] is a searchable encryp-
tion protocol with leakage profile L. Assume also that F is a
secure PRF, (Enc,Dec) is a secure encryption scheme, and
Setup, Query a secure authenticated set protocol. Then our
V-OXT protocol is a verifiable searchable encryption protocol
with the same leakage profile L. As in [7], the statement holds
in the standard model for the non-adaptive case, and in the
random oracle model for the adaptive one.

Proof: (Sketch.) Correctness is obvious by inspection.

Soundness is easily argued since the soundness properties
of the Authenticated Set protocol guarantees that if the Client
does not output ⊥, the results in lines (3) and (6) of Search
must be correct. Similarly because of the pseudorandomness1

of F the server cannot return an incorrect value of T (j1) in
line (4).

We are left to argue security, i.e. build a simulator Sim
that satisfies the condtions in Section II-A. As in [7] we
first consider the non-adaptive case in which the adversary
announces all the queries at the beginning of the protocol,
before EDBSetup is run. Let SimOXT be the simulator for
OXT shown in [7] for the honest-but-curious non-adaptive
case. Let A be the adversary which chooses the database
DB. On input L(DB), our Sim runs SimOXT to obtain
Tsim, XSetsim. Note that from Tsim our simulator Sim can
also construct a set Wsim which is going to be consistent with
Tsim (and therefore the queries) just by adding to Wsim all
the indices j such that Tsim(j) is not empty. In addition our
Sim runs the steps that SimOXT does not run. I.e. it runs

1As noted before, when F is used with key Ka it would be sufficient to
use a message authentication code.

the Setup phase of the authenticated set protocol to construct
AWsim and AXSetsim. Similarly our Sim chooses Ka and
authenticates each row of Tsim as the client does in the real
protocol.

Sim outputs EDBsim = [Tsim, AWsim, AXSetsim] for A.

As pointed out in [7] this completes the simulation, since
at this point Sim has enough information to indistinguishably
simulate the Search protocol with the adversary A (the details
are omitted here, but they are based on [7] with the added
verification steps).

The adaptive case is dealty analogously as [7], with the use
of the random oracle (which helps ”explain” dynamically the
simulated structure EDMSim built by the simulator.

REMARK. We point out that we are using a simplified version
of the honest-but-curious OXT protocol in [7], one that takes
two rounds and uses only symmetric primitives2. The actual
OXT protocol in [7] requires only a single round of interaction
at the cost of using Diffie-Hellman type asymmetric primitives
in the computation of the xtags, but the proof of security
remains the same.

V. MULTI-CLIENT PROTOCOL

Remember that in the multi-client case the Data Owner
runs EDBSetup. Then later when a Client wants to query
the database on a conjunction of keywords w1 ∧ w2 he runs
GenToken with the Data Owner and obtains a token tw1,w2 .
This token is used by the Client to run Search together with
the Server.

In [25] the authors extend OXT to the multi-client case. If
you look at the simplified version of OXT that we presented
above, an obvious roadblock is that the computation of the
xtags requires the key KX which is held by the Data Owner.
This prevents the latter from releasing a ”query-based” token
to compute the query-based xtags (for a , and it is not possible
(using a generic PRF function F the Data Owner need to
”delegate” to the client the computation of F (KX , ·) restricted
to certain inputs). This problem led to the development of
Diffie-Hellman based oblivious cross-tags in [7], [25].

A. The MC-OXT Protocol

We now describe a simplified version of the MC-OXT
protocol from [25] which is secure in the honest-but-curious
model3. Here we assume that the PRF function F outputs
elements in Zp for a prime p and that G is a cyclic group
of prime order p generated by g. We also assume that the
Data Owner has a key pair (sk, vk) for a signature scheme
(KG,Sig, V er) with vk publicly known and associated with
the Data Owner4. See Figs. 3, 4 and 5.

2This is described at the bottom of page 13 in the full version of [7] available
at http://eprint.iacr.org/2013/169.

3The version described here, remove a ”counter” step in the computation
of the cross-tags which is designed to reduce the leakage of the protocol. We
are omitting that step for clarity’s sake, but our verifiable modifications apply
also to the actual MC-OXT protocol from [25].

4For the honest-but-curious case a message authentication code would
suffice, but we chose to describe the protocol with signatures instead since
they are going to be needed anyway in the verifiable solution.
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EDBSetup
1) Select keys KT ,KS ,KI ,KZ ,KX ,KM for PRF F ;
2) Initialize XSet to empty set and T to empty array;
3) ∀w ∈ ∪iWi:

• Set j = F (KT , w), Kew = F (KS , w);
• For all i = 1, . . . , d, if w ∈Wi:
◦ Set e = Enc(Kew, indi), y =

F (KI , indi) · F (KZ , w)−1 and T (j) ←
T (j)||(e, y);

◦ Set xtag = gF (KI ,indi)·F (KX ,w) and
XSet← XSet ∪ {xtag};

4) Store EDB = [KM , T,XSet] with the Server, and
keep KT ,KS ,KI ,KZ ,KX ,KM secret.

Fig. 3. MC-OXT Setup phase

GenToken
The Client submits w1, w2. The Data Owner sets
• j1 = F (KT , w1) and ρ2 ∈R Zp;
• env = Enc(KM , (j1, ρ2)) and σ = Sig(sk, env);
• trap = gF (KX ,w2)·F (KZ ,w1)·ρ2

• Kew1
= F (KS , w1)

and sends the token tw1,w2 = (env, σ, trap,Kew1) to the
Client.

Fig. 4. MC-OX Token Generation

In [25] a leakage profile L is described for MC-OXT, and
it is proven that MC-OXT is a secure multi-client encrypted
search, against an honest-but-curious server, and a possibly
malicious client. In the next section we show how to add
security against a possibly malicious server.

B. Adding verifiability

To add server verifiability we need to do all the modifica-
tions that we made to the single client case:

• make sure that the Data Owner signs the table T
so that the Client knows the Server did not tamper
with it (in the single client case, it was sufficient to
use message authentication since the Client was also
the Data Owner who had stored the data with the
Server, but here we need to use signatures which are
universally verifiable)

• D must also store a ”master list” W of all the
keywords in the database as a publicly verifiable
authenticated set, so that the Server can prove if w1

does not appear in any document

A more subtle problem arises in the computation and
verification of the cross-tags xtag. In the MC-OXT protocol,
the Server computes the tags on its own and sends only the
encrypted indices of the documents that match both keywords.
This means that while the Server learns `(w1) the number of
documents matching only w1, this information is not leaked
to the Client. But in our model we cannot trust the Server to
compute the cross-tags correctly, so we need to check. Storing
XSet as an authenticated set is a necessary step, but not a
sufficient one since the Client does not even know which value
is computed and tested for membership in XSet. The only

Search(w1, w2)
The Client sends (env, σ, trap) to the Server. If
V er(vk, env, σ) = 1 the Server:

1) Computes (j1, ρ2) = Dec(KM , env)
2) Retrieves T [j1]
3) For ever (ek, yk) ∈ T [j1]

• If trapyk/ρ2 ∈ XSet return ek to the Client.
• The Client computes ind = Dec(Kew1

, ek)
and adds it to its output.

Fig. 5. MC-OXT Search phase
.

way we found to fix this problem was to leak `(w1) to the
client, since at the very least the Client needs to verify which
cross-tags are in XSet and which are not5.

Still, this is not yet sufficient, since the cross-tag is set as
xtag = trapyk/ρ2 , and the Client does not have the exponent
yk/ρ2 (which is necessary as argued in [25] to prevent further
leakage of unauthorized information). To fix this problem with
furnish the Client with an auxiliary commitment to y and ρ2 of
the form g1/ρ2 and ĝy and then require the Server to provide
a zero-knowledge proof that he is using the correct exponent
in the computation of the cross-tag.

The protocol MC − V − OXT is described in Figs. 6, 7
and 8. We stress that for MC-V-OXT we must use a publicly
verifiable authenticated set to store the sets W and XSet.

EDBSetup
1) Select keys KT ,KS ,KG,KI ,KZ ,KX ,KM for PRF

F ;
2) Initialize W , XSet to empty sets and T , L to empty

arrays;
3) ∀w ∈ ∪iWi set:

• j = F (KT , w)
• Kew = F (KS , w)
• gw = gF (KG,w);
• For all i = 1, . . . , d, if w ∈Wi set:
◦ e = Enc(Kew, indi),
◦ y = F (KI , indi) · F (KZ , w)−1;
◦ T (j)← T (j)||(e, gyw, y);
◦ xtag = gF (KI ,indi)·F (KX ,w);
◦ XSet← XSet ∪ {xtag};

• L(j) = [τj = |T (j)|, σj = Sig(sk, τj)],
• If (ek, yk, gk) ∈ T (j) then change it to

(ek, Sig(sk, (k, ek)), gk, Sig(sk, (k, gk)), yk)
;

• W ←W ∪ {j}
4) Run Setup on input W , let AW be the authenticated

set corresponding to W ;
5) Run Setup on input XSet, let AXSet be the au-

thenticated set corresponding to XSet;
6) Store EDB = [KMT, L,AW,AXSet] with the

Server, and keep the other keys secret.

Fig. 6. MC-V-OXT Setup phase

5We point out that the improved version of MC-OXT with the counters
in [25] leaks `(w1) to the Client so our Verifiable solution does not leak
additional information to the client compared to the full MC-OXT.

1st Workshop on Security and Privacy in the Cloud (SPC 2015)

503



GenToken The Client submits w1, w2. The Data Owner sets
• gw1 = gF (KG,w1)

• j1 = F (KT , w1) and ρ2 ∈R Zp;
• env = Enc(KM , ρ2) and ĝ = g1/ρ2 ;
• trap = gF (KX ,w2)·F (KZ ,w1)·ρ2 ;
• σ = Sig(sk, (j1, env, ĝ, gw1

, trap));
• Kew1 = F (KS , w1)

and sends the token tw1,w2
= (j1, env, ĝ, gw1

, σ, trap,Kew1
)

to the Client.

Fig. 7. MC-V-OX Token Generation

Search(w1, w2)
The Client sets Out to be the empty list and
sends (j1, env, ĝ, gw1 , trap, σ) to the Server. If
V er(vk, (j1, env, ĝ, gw1 , trap), σ) = 1:

1) The client and the server run Query(j1, AW );
• If Client outputs ⊥ in the Query protocol, the

Client outputs ⊥ overall and stops;
• if j1 /∈W the Client outputs Out and stops;

2) The Server computes ρ2 = Dec(KM , env)
3) The Server retrieves T [j1]
4) Send L[j1] = [τ, στ ] to the Client
5) If V er(vk, τ, στ ) = 0 the Client outputs ⊥ and stops
6) For k = 1 to τ

• Let (ek, σek , gk, σgk , yk) ∈ T [j1]
• The Server sends gk, σgk to the client;
• If V er(vk, (k, gk), σgk) = 0 the Client out-

puts ⊥ and stops;
• The Server sends uk = trapyk/ρ2 to the

Client together with a ZK proof of correctness
executed using ĝ, gk and gw1

;
◦ If the ZK proof fails, the Client outputs
⊥;

• The client and the server run
Query(uk, AXSet);
◦ If Client outputs ⊥ in the Query pro-

tocol, the Client outputs ⊥ overall and
stops;

◦ if uk ∈ AXSet the Server sends ek, σek
to the Client

◦ If V er(vk, (k, ek), σek) = 1 then
the Client sets Out ← Out ∪
{Dec(Kew1

, ek)};
7) The Client outputs Out.

Fig. 8. MC-V-OXT Search phase
.

The ZK proof of correctness for uk is composed as follows.
We point out that

uk = trapyk/ρ2 ĝ = g1/ρ2 gk = gykw1

The proof proceeds as follows

• The Server reveals wk = g
yk/ρ2
w1

• The Server proves in ZK that :
◦ Dlogtrapuk = Dloggw1

wk
◦ Dlogg ĝ = Dloggkwk

The last two steps can be executed using any ZK protocol
for the equality of discrete logs over different basis (e.g. [12],
[13])

C. Security Proof

In [25], it is proven that MC-OXT is a multi-client search-
able encryption protocol with leakage profile L. When the
Client queries w1, w2 to the server, the protocol described
in [25] leaks the value `(w1) (the number of documents
matching w1) to the Client. Some additional countermeasures
are presented in [25] to hide this value to the client, but in the
following we assume that L includes `(w1).

We now prove that our protocol has the same leakage, and
yet provides the desirable verifiability property.

Theorem 2: Assume MC-OXT from [25] is a multi-client
searchable encryption protocol with leakage profile L. Assume
also that F is a secure PRF, (Enc,Dec) is a secure encryption
scheme, Kg, Sig, V er a secure signature scheme, Setup,
Query a secure publicly verifiable authenticated set protocol,
and that the DDH Assumption holds over the group G. Then
our MC-V-OXT protocol is a multi-client verifiable searchable
encryption protocol with the same leakage profile L.

Proof: (Sketch.) Correctness is obvious by inspection.

Soundness is a consequence of the soundness properties of
the (i) Authenticated Set protocol, (ii) signature scheme and
(iii) ZK proof. Those steps guarantee that if the Client does
not output ⊥, then the Server must be acting according to
the specifications of MC-OXT, and therefore the result of the
Search must be correct.

Security against a malicious server, is argued similarly as
Theorem 1. It is not hard to see that if Sim is the simulator for
MC-OXT, the simulator for our protocol must just ”augment”
the protocol with the added verification steps, which he can
easily perform, since he can generate all the keys and secret
information itself.

Security against malicious clients is already achieved by
MC-OXT. We only need to make sure that no additional
information is leaked to the client by our protocol compared
to MC-OXT. The ”authentication” information (the signatures,
and the authentication values in the authenticated set proto-
cols) can be easily simulated (since the keys to generate the
signatures and the authenticated set structures can be chosen by
the simulator itself). The only other additional value received
by the Client is the value gyw during GenToken and the ZK
proof of correctness for uk in Search. The latter can also
be simulated (since it is zero-knowledge). The former can
be simulated using a random group element in G, under the
Diffie-Hellman Assumption (this is a reason we provide gyw
using a w-specific generator – if we always used g this would
not be simulatable anymore).

VI. CONCLUSIONS

We presented two highly scalable protocols for conjunctive
queries over encrypted data which achieve full security against
a possibly malicious server. The first protocol works in the
single client model, while the the second protocol works in
the more challenging multi-client model. Our protocols use
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as a starting point the OXT Protocol described in [7] and its
extension to the multi-client case in [25]. While these protocols
supports possibly malicious clients, they do not consider a
malicious server.

We are currently working on an implementation of our
result. Since the general structure of our protocols follows
that of OXT and MC-OXT we expect our protocols to be
as efficient and scalable as their non-verifiable counterparts.
Indeed our protocols only add a few more cryptographic
operations to OXT and MC-OXT and those are very unlikely
to substantially change the efficiency of the overall solution:
indeed when OXT and MC-OXT are applied to massive data
sets the cryptographic operations are almost ”for free” as the
system is most of the time busy with I/O operations ([27]).

We are also interested in looking at the BlindSeer solution
presented in [31], [18] and see if our techniques can be used
there to add server verifiability to those protocols.
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